A Cost-Efficient High-Speed VLSI Architecture for Spiking Convolutional Neural Network Inference Using Time-Step Binary Spike Maps

被引:16
作者
Zhang, Ling [1 ]
Yang, Jing [1 ]
Shi, Cong [1 ,2 ]
Lin, Yingcheng [1 ]
He, Wei [1 ]
Zhou, Xichuan [1 ,2 ]
Yang, Xu [3 ]
Liu, Liyuan [3 ]
Wu, Nanjian [3 ]
机构
[1] Chongqing Univ, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Key Lab Dependable Serv Comp Cyber Phys Soc, Minist Educ, Chongqing 400044, Peoples R China
[3] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
关键词
neuromorphic computing; spiking convolutional neural networks; SNN hardware; VLSI implementation; pixel stream processing; ON-CHIP; PROCESSOR; SYSTEM; MEMORY; RULE;
D O I
10.3390/s21186006
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Neuromorphic hardware systems have been gaining ever-increasing focus in many embedded applications as they use a brain-inspired, energy-efficient spiking neural network (SNN) model that closely mimics the human cortex mechanism by communicating and processing sensory information via spatiotemporally sparse spikes. In this paper, we fully leverage the characteristics of spiking convolution neural network (SCNN), and propose a scalable, cost-efficient, and high-speed VLSI architecture to accelerate deep SCNN inference for real-time low-cost embedded scenarios. We leverage the snapshot of binary spike maps at each time-step, to decompose the SCNN operations into a series of regular and simple time-step CNN-like processing to reduce hardware resource consumption. Moreover, our hardware architecture achieves high throughput by employing a pixel stream processing mechanism and fine-grained data pipelines. Our Zynq-7045 FPGA prototype reached a high processing speed of 1250 frames/s and high recognition accuracies on the MNIST and Fashion-MNIST image datasets, demonstrating the plausibility of our SCNN hardware architecture for many embedded applications.
引用
收藏
页数:14
相关论文
共 42 条
[1]   True North: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip [J].
Akopyan, Filipp ;
Sawada, Jun ;
Cassidy, Andrew ;
Alvarez-Icaza, Rodrigo ;
Arthur, John ;
Merolla, Paul ;
Imam, Nabil ;
Nakamura, Yutaka ;
Datta, Pallab ;
Nam, Gi-Joon ;
Taba, Brian ;
Beakes, Michael ;
Brezzo, Bernard ;
Kuang, Jente B. ;
Manohar, Rajit ;
Risk, William P. ;
Jackson, Bryan ;
Modha, Dharmendra S. .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2015, 34 (10) :1537-1557
[2]  
[Anonymous], 2016, C COMPUTER VISION PA, DOI DOI 10.1109/CVPR.2016.90
[3]   Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations [J].
Benjamin, Ben Varkey ;
Gao, Peiran ;
McQuinn, Emmett ;
Choudhary, Swadesh ;
Chandrasekaran, Anand R. ;
Bussat, Jean-Marie ;
Alvarez-Icaza, Rodrigo ;
Arthur, John V. ;
Merolla, Paul A. ;
Boahen, Kwabena .
PROCEEDINGS OF THE IEEE, 2014, 102 (05) :699-716
[4]   An Event-Driven Multi-Kernel Convolution Processor Module for Event-Driven Vision Sensors [J].
Camunas-Mesa, Luis ;
Zamarreno-Ramos, Carlos ;
Linares-Barranco, Alejandro ;
Acosta-Jimenez, Antonio J. ;
Serrano-Gotarredona, Teresa ;
Linares-Barranco, Bernabe .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (02) :504-517
[5]   A Configurable Event-Driven Convolutional Node with Rate Saturation Mechanism for Modular ConvNet Systems Implementation [J].
Camunas-Mesa, Luis A. ;
Dominguez-Cordero, Yaisel L. ;
Linares-Barranco, Alejandro ;
Serrano-Gotarredona, Teresa ;
Linares-Barranco, Bernabe .
FRONTIERS IN NEUROSCIENCE, 2018, 12
[6]   Spiking Deep Convolutional Neural Networks for Energy-Efficient Object Recognition [J].
Cao, Yongqiang ;
Chen, Yang ;
Khosla, Deepak .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 113 (01) :54-66
[7]   A 4096-Neuron 1M-Synapse 3.8-pJ/SOP Spiking Neural Network With On-Chip STDP Learning and Sparse Weights in 10-nm FinFET CMOS [J].
Chen, Gregory K. ;
Kumar, Raghavan ;
Sumbul, H. Ekin ;
Knag, Phil C. ;
Krishnamurthy, Ram K. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (04) :992-1002
[8]   Loihi: A Neuromorphic Manycore Processor with On-Chip Learning [J].
Davies, Mike ;
Srinivasa, Narayan ;
Lin, Tsung-Han ;
Chinya, Gautham ;
Cao, Yongqiang ;
Choday, Sri Harsha ;
Dimou, Georgios ;
Joshi, Prasad ;
Imam, Nabil ;
Jain, Shweta ;
Liao, Yuyun ;
Lin, Chit-Kwan ;
Lines, Andrew ;
Liu, Ruokun ;
Mathaikutty, Deepak ;
Mccoy, Steve ;
Paul, Arnab ;
Tse, Jonathan ;
Venkataramanan, Guruguhanathan ;
Weng, Yi-Hsin ;
Wild, Andreas ;
Yang, Yoonseok ;
Wang, Hong .
IEEE MICRO, 2018, 38 (01) :82-99
[9]   Neural and Synaptic Array Transceiver: A Brain-Inspired Computing Framework for Embedded Learning [J].
Detorakis, Georgios ;
Sheik, Sadique ;
Augustine, Charles ;
Paul, Somnath ;
Pedroni, Bruno U. ;
Dutt, Nikil ;
Krichmar, Jeffrey ;
Cauwenberghs, Gert ;
Neftci, Emre .
FRONTIERS IN NEUROSCIENCE, 2018, 12
[10]  
Diehl PU, 2015, IEEE IJCNN