Annular Khovanov-Lee homology, braids, and cobordisms

被引:8
作者
Grigsby, J. Elisenda [1 ]
Licata, Anthony M. [2 ]
Wehrli, Stephan M. [3 ]
机构
[1] Boston Coll, Dept Math, 522 Maloney Hall, Chestnut Hill, MA 02467 USA
[2] Australian Natl Univ, Math Sci Inst, Canberra, ACT, Australia
[3] Syracuse Univ, Dept Math, 215 Carnegie, Syracuse, NY 13244 USA
关键词
KNOT FLOER HOMOLOGY; RASMUSSEN INVARIANT; TRANSVERSE KNOTS; CLOSED BRAIDS; SURFACES; CATEGORIFICATION; LINKS;
D O I
10.4310/PAMQ.2017.v13.n3.a2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the Khovanov-Lee complex of an oriented link, L, in a thickened annulus, A x I, has the structure of a (Z circle plus Z) filtered complex whose filtered chain homotopy type is an invariant of the isotopy class of L subset of (A x I). Using ideas of Ozsvath-Stipsicz-Szabo [31] as reinterpreted by Livingston [30], we use this structure to define a family of annular Rasmussen invariants that yield information about annular and non-annular cobordisms. Focusing on the special case of annular links obtained as braid closures, we use the behavior of the annular Rasmussen invariants to obtain a necessary condition for braid quasipositivity and a sufficient condition for right-veeringness.
引用
收藏
页码:389 / 436
页数:48
相关论文
共 42 条
[1]  
Asaeda M. M., 2004, Algebr. Geom. Topol, V4, P1177, DOI [10.2140/agt.2004.4.1177, DOI 10.2140/AGT.2004.4.1177]
[2]   Khovanov-Seidel quiver algebras and bordered Floer homology [J].
Auroux, Denis ;
Grigsby, J. Elisenda ;
Wehrli, Stephan M. .
SELECTA MATHEMATICA-NEW SERIES, 2014, 20 (01) :1-55
[3]   CATEGORIFIED INVARIANTS AND THE BRAID GROUP [J].
Baldwin, John A. ;
Grigsby, J. Elisenda .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (07) :2801-2814
[4]   Khovanov homology, open books, and tight contact structures [J].
Baldwin, John A. ;
Plamenevskaya, Olga .
ADVANCES IN MATHEMATICS, 2010, 224 (06) :2544-2582
[5]   Khovanov's homology for tangle and cobordisms [J].
Bar-Natan, D .
GEOMETRY & TOPOLOGY, 2005, 9 :1443-1499
[6]  
Bar-Natan D., 2002, Algebr. Geom. Topol., V2, P337, DOI [10.2140/agt.2002.2.337, DOI 10.2140/AGT.2002.2.337]
[7]   The Karoubi envelope and Lee's degeneration of Khovanov homology [J].
Bar-Natan, Dror ;
Morrison, Scott .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 :1459-1469
[8]   Categorification of the Colored Jones Polynomial and Rasmussen Invariant of Links [J].
Beliakova, Anna ;
Wehrli, Stephan .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (06) :1240-1266
[9]  
Bennequin D., 1982, 3 SCHNEPF GEOM C SCH, V1, P107
[10]  
CHA JC, 2006, KNOTINFO TABLE KNOT