Inhibition of Akt kinase signalling and activation of Forkhead are indispensable for upregulation of FasL expression in apoptosis of glioma cells

被引:75
作者
Ciechomska, I [1 ]
Pyrzynska, B [1 ]
Kazmierczak, P [1 ]
Kaminska, B [1 ]
机构
[1] M Nencki Inst Expt Biol, Dept Cellular Biochem, Lab Transcript Regulat, PL-02093 Warsaw, Poland
关键词
Akt signalling; Forkhead transcription factor; Fas/FasL; apoptosis; cyclosporin A; glioma cells;
D O I
10.1038/sj.onc.1207137
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Activation of Akt signalling pathway is frequently found in glioma cells and may contribute to their resistance to undergo apoptosis in response to conventional therapies. We found that cyclosporin A (CsA) induces apoptosis of C6 glioma cells, which is associated with transcriptional activation of fasL. In the present paper, we investigated an involvement of Akt signalling in the regulation of FasL expression in CsA-induced apoptosis. We demonstrated that the level of active Akt decreases significantly after CsA treatment, which results in the decrease of Forkhead phosphorylation and its translocation to the nucleus. It correlated with an increase of binding to the Forkhead-responsive element FHRE from the FasL promoter, as demonstrated by gel-shift assays. Although treatment with LY294002, a specific inhibitor of PI3 K, decreased the phosphorylation of Akt and increased Fkhr translocation to the nucleus, these events were not sufficient to induce FasL expression and apoptosis of C6 glioma cells. Interference with Akt/Forkhead signalling by membrane-targeted Akt or removal of the FKHR-binding sites from the FasL promoter significantly abolished its activation. These results indicate that downregulation of Akt signalling and activation of Forkhead is a prerequisite for the induction of FasL promoter. It may be clinically important for pharmacological intervention in gliomas.
引用
收藏
页码:7617 / 7627
页数:11
相关论文
共 75 条
[1]   Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase [J].
Ahmed, NN ;
Grimes, HL ;
Bellacosa, A ;
Chan, TO ;
Tsichlis, PN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :3627-3632
[2]   Mechanism of activation of protein kinase B by insulin and IGF-1 [J].
Alessi, DR ;
Andjelkovic, M ;
Caudwell, B ;
Cron, P ;
Morrice, N ;
Cohen, P ;
Hemmings, BA .
EMBO JOURNAL, 1996, 15 (23) :6541-6551
[3]   Forkhead transcription factors contribute to execution of the mitotic programme in mammals [J].
Alvarez, B ;
Martinez, C ;
Burgering, BMT ;
Carrera, AC .
NATURE, 2001, 413 (6857) :744-747
[4]   Treatment of experimental glioma by administration of adenoviral vectors expressing Fas ligand [J].
Ambar, BB ;
Frei, K ;
Malipiero, U ;
Morelli, AE ;
Castro, MG ;
Lowenstein, PR ;
Fontana, A .
HUMAN GENE THERAPY, 1999, 10 (10) :1641-1648
[5]   Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1 [J].
Biggs, WH ;
Meisenhelder, J ;
Hunter, T ;
Cavenee, WK ;
Arden, KC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (13) :7421-7426
[6]   Inhibition of nuclear import by protein kinase B (Akt) regulates the subcellular distribution and activity of the forkhead transcription factor AFX [J].
Brownawell, AM ;
Kops, GJPL ;
Macara, IG ;
Burgering, BMT .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (10) :3534-3546
[7]   Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway [J].
Brunet, A ;
Datta, SR ;
Greenberg, ME .
CURRENT OPINION IN NEUROBIOLOGY, 2001, 11 (03) :297-305
[8]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[9]   PROTEIN-KINASE-B (C-AKT) IN PHOSPHATIDYLINOSITOL-3-OH INASE SIGNAL-TRANSDUCTION [J].
BURGERING, BMT ;
COFFER, PJ .
NATURE, 1995, 376 (6541) :599-602
[10]   Regulation of cell death protease caspase-9 by phosphorylation [J].
Cardone, MH ;
Roy, N ;
Stennicke, HR ;
Salvesen, GS ;
Franke, TF ;
Stanbridge, E ;
Frisch, S ;
Reed, JC .
SCIENCE, 1998, 282 (5392) :1318-1321