Singularly perturbed control systems with noncompact fast variable

被引:1
作者
Thuong Nguyen [1 ]
Siconolfi, Antonio [2 ]
机构
[1] Quy Nhon Univ, Dept Math, 170 An Duong Vuong St, Quy Nhon City, Vietnam
[2] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
Optimal control; Singular perturbation; Viscosity solutions; Hamilton-Jacobi-Bellman equations;
D O I
10.1016/j.jde.2016.07.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with a singularly perturbed optimal control problem with slow and fast variable depending on a parameter epsilon. We study the asymptotics, as a goes to 0, of the corresponding value functions, and show convergence, in the sense of weak semilimits, to sub and supersolution of a suitable limit equation containing the effective Hamiltonian. The novelty of our contribution is that no compactness condition is assumed on the fast variable. This generalization requires, in order to perform the asymptotic procedure, an accurate qualitative analysis of some auxiliary equations posed on the space of fast variable. The task is accomplished using some tools of Weak KAM theory, and in particular the notion of Aubry set. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:4593 / 4630
页数:38
相关论文
共 19 条
[1]   Singular perturbations of nonlinear degenerate parabolic PDEs: A general convergence result [J].
Alvarez, O ;
Bardi, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 170 (01) :17-61
[2]   Viscosity solutions methods for singular perturbations in deterministic and stochastic control [J].
Alvarez, O ;
Bardi, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2001, 40 (04) :1159-1188
[3]   Introduction and statement of the problem [J].
Alvarez, Olivier ;
Bardi, Martino .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 204 (960) :1-+
[4]  
[Anonymous], 2008, OPTIMAL CONTROL VISC
[5]  
[Anonymous], 1990, OPTIMIZATION NONSMOO
[6]  
[Anonymous], 1986, HOMOGENIZATION HAMIL
[7]  
Arstein Zvi, 2004, 43 IEEE C DEC CONTR, V41
[8]  
Arstein Zvi, 2000, APPL MATH OPTIM, V41
[9]  
Aubin JP., 1984, Differential Inclusions: Set Valued Maps and Viability Theory
[10]  
Barles G., 1994, Mathematiques & Applications (Berlin) Mathematics & Applications, V17