Polyakov conjecture for hyperbolic singularities

被引:17
作者
Hadasz, L
Jaskólski, Z
机构
[1] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France
[2] Jagiellonian Univ, S Smoluchowski Inst Phys, PL-30059 Krakow, Poland
[3] Univ Zielona Gora, Inst Phys, PL-65069 Zielona Gora, Poland
关键词
D O I
10.1016/j.physletb.2003.08.075
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose the form of the Liouville action satisfying Polyakov conjecture on the accessory parameters for the hyperbolic singularities on the Riemann sphere. (C) 2003 Published by Elsevier B.V.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 19 条
[1]   BLACK-HOLE IN 3-DIMENSIONAL SPACETIME [J].
BANADOS, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW LETTERS, 1992, 69 (13) :1849-1851
[2]   EXACT QUANTUM 3-POINT FUNCTION OF LIOUVILLE HIGHEST WEIGHT STATES [J].
BILAL, A ;
GERVAIS, JL .
NUCLEAR PHYSICS B, 1988, 305 (01) :33-68
[3]   Multi-black-hole geometries in (2+1)-dimensional gravity [J].
Brill, DR .
PHYSICAL REVIEW D, 1996, 53 (08) :R4133-R4137
[4]   Liouville theory, accessory parameters and (2+1)-dimensional gravity [J].
Cantini, L ;
Menotti, P ;
Seminara, D .
NUCLEAR PHYSICS B, 2002, 638 (03) :351-377
[5]   Proof of Polyakov conjecture for general elliptic singularities [J].
Cantini, L ;
Menotti, P ;
Seminara, D .
PHYSICS LETTERS B, 2001, 517 (1-2) :203-209
[6]  
Cantini L., HEPTH0112102
[7]  
HADASZ L, UNPUB
[8]  
Picard E., 1905, CRELLES J, V130, P243
[9]  
Picard E., 1893, J MATH PURE APPL, V9, P273
[10]  
POINCAR H., 1898, J MATH PURES APPL, V293, P137