Inverse Design of Nanophotonic Devices using Deep Neural Networks

被引:0
|
作者
Kojima, Keisuke [1 ,2 ]
Tang, Yingheng [1 ,3 ]
Koike-Akino, Toshiaki [1 ]
Wang, Ye [1 ]
Jha, Devesh [1 ]
Parsons, Kieran [1 ]
Tahersima, Mohammad H. [1 ]
Sang, Fengqiao [2 ]
Klamkin, Jonathan [2 ]
Qi, Minghao [3 ]
机构
[1] Mitsubishi Elect Res Labs MERL, 201 Broadway, Cambridge, MA 02139 USA
[2] Univ Calif Santa Barbara, Elect & Comp Engn Dept, Santa Barbara, CA 93106 USA
[3] Purdue Univ, Elect & Comp Engn Dept, W Lafayette, IN 47907 USA
来源
2020 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP) AND INTERNATIONAL CONFERENCE ON INFORMATION PHOTONICS AND OPTICAL COMMUNICATIONS (IPOC) | 2020年
关键词
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present three different approaches to apply deep learning to inverse design for nanophotonic devices. The forward and inverse regression models use device parameters as inputs and device responses as outputs, and vice versa. The generative model to create a series of improved designs. We demonstrate them to design nanophotonic power splitters with multiple splitting ratios. (C) 2020 The Author(s)
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Deep Neural Networks for Inverse Design of Nanophotonic Devices
    Kojima, Keisuke
    Tahersima, Mohammad H.
    Koike-Akino, Toshiaki
    Jha, Devesh K.
    Tang, Yingheng
    Wang, Ye
    Parsons, Kieran
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (04) : 1010 - 1019
  • [2] Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures
    Liu, Dianjing
    Tan, Yixuan
    Khoram, Erfan
    Yu, Zongfu
    ACS PHOTONICS, 2018, 5 (04): : 1365 - 1369
  • [3] Training deep neural networks for the inverse design of nanophotonic structures
    Liu, Dianjing
    Tan, Yixuan
    Khoram, Erfan
    Yu, Zongfu
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [4] Efficient inverse design and spectrum prediction for nanophotonic devices based on deep recurrent neural networks
    Yan, Ruoqin
    Wang, Tao
    Jiang, Xiaoyun
    Huang, Xing
    Wang, Lu
    Yue, Xinzhao
    Wang, Huimin
    Wang, Yuandong
    NANOTECHNOLOGY, 2021, 32 (33)
  • [5] Inverse design of nanophotonic devices using generative adversarial networks
    Kim, Wonsuk
    Kim, Soojeong
    Lee, Minhyeok
    Seok, Junhee
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 115
  • [6] Nanophotonic inverse design with deep neural networks based on knowledge transfer using imbalanced datasets
    Qiu, Cankun
    Wu, Xia
    Luo, Zhi
    Yang, Huidong
    He, Guannan
    Huang, Bo
    OPTICS EXPRESS, 2021, 29 (18) : 28406 - 28415
  • [7] Nanophotonic Particle Simulation and Inverse Design Using Artificial Neural Networks
    Peurifoy, John
    Shen, Yichen
    Jing, Li
    Yang, Yi
    Cano-Renteria, Fidel
    Delacy, Brendan
    Tegmark, Max
    Joannopoulos, John D.
    Soljaclc, Marin
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XXVI, 2018, 10526
  • [8] Nanophotonic particle simulation and inverse design using artificial neural networks
    Peurifoy, John
    Shen, Yichen
    Jing, Li
    Yang, Yi
    Cano-Renteria, Fidel
    DeLacy, Brendan G.
    Joannopoulos, John D.
    Tegmark, Max
    Soljacic, Marin
    SCIENCE ADVANCES, 2018, 4 (06):
  • [9] Inverse design of nanophotonic devices using dynamic binarization
    Butz, Marco
    Abazi, Adrian S.
    Ross, Rene
    Risse, Benjamin
    Schuck, Carsten
    OPTICS EXPRESS, 2023, 31 (10) : 15747 - 15756
  • [10] Wavelength Controllable Forward Prediction and Inverse Design of Nanophotonic Devices Using Deep Learning
    Song, Yuchen
    Wang, Danshi
    Ye, Han
    Qin, Jun
    Zhang, Min
    2020 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATIONS (ECOC), 2020,