Monitoring the permeabilization of a single cell in a microfluidic device, through the estimation of its dielectric properties based on combined dielectrophoresis and electrorotation in situ experiments

被引:20
作者
Trainito, Claudia Irene [1 ]
Francais, Olivier [1 ]
Le Pioufle, Bruno [1 ]
机构
[1] Ecole Normale Super, CNRS SATIE, F-90230 Cachan, France
关键词
Cell dielectric properties; Dielectrophoresis; Electropermeabilization; Electrorotation; TRAVELING-WAVE DIELECTROPHORESIS; BIPOLAR RECTANGULAR PULSES; MEMBRANE ELECTROPERMEABILIZATION; MAMMALIAN-CELLS; SEPARATION; ELECTROPORATION; CONDUCTIVITY; MANIPULATION; BLOOD; MODEL;
D O I
10.1002/elps.201400482
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The electric field is commonly used in microdevices to handle, treat, or monitor living cells for various biological or biomedical applications (cells electrofusion, gene electrotransfer, drugs injection, cell sorting, ...). Dielectrophoresis (DEP) forces, using stationary waves (conventional DEP) or traveling waves, are widely used for the cell handling or sorting. Electrorotation, which is induced by a rotating electrical field, is used for the determination of cell dielectric parameters. The application of pulsed electric field (PEF) results in the cell membrane permeabilization that might allow the transfer of various molecules in the cytoplasm. In this paper, we propose a method to monitor in situ the level of electropermeabilization induced by PEF application on a single cell, by combining the dielectrophoresis force and the electrorotation torque within a microfluidic device. The method was experimented on two different cell lines (human leukemic T-cell lymphoblast and murine melanoma cell): a single cell is captured by dielectrophoresis while its dielectric properties (both permittivity and conductivity of cytoplasm and membrane) are estimated thanks to a rotating electric field, which is applied simultaneously. The permeabilization effect of PEF, applied to the single cell trapped in such conditions in the biodevice, could be monitored by the estimation of its dielectric properties before and after pulse application.
引用
收藏
页码:1115 / 1122
页数:8
相关论文
共 59 条
[1]   Separation of tumor cells with dielectrophoresis-based microfluidic chip [J].
Alshareef, Mohammed ;
Metrakos, Nicholas ;
Perez, Eva Juarez ;
Azer, Fadi ;
Yang, Fang ;
Yang, Xiaoming ;
Wang, Guiren .
BIOMICROFLUIDICS, 2013, 7 (01)
[2]   ELECTRO-ROTATION - DEVELOPMENT OF A TECHNIQUE FOR DIELECTRIC MEASUREMENTS ON INDIVIDUAL CELLS AND PARTICLES [J].
ARNOLD, WM ;
ZIMMERMANN, U .
JOURNAL OF ELECTROSTATICS, 1988, 21 (2-3) :151-191
[3]   SEPARATION OF HUMAN BREAST-CANCER CELLS FROM BLOOD BY DIFFERENTIAL DIELECTRIC AFFINITY [J].
BECKER, FF ;
WANG, XB ;
HUANG, Y ;
PETHIG, R ;
VYKOUKAL, J ;
GASCOYNE, PRC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (03) :860-864
[4]   A TRUST REGION ALGORITHM FOR NONLINEARLY CONSTRAINED OPTIMIZATION [J].
BYRD, RH ;
SCHNABEL, RB ;
SHULTZ, GA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (05) :1152-1170
[5]   A combined dielectrophoresis, traveling wave dielectrophoresis and electrorotation microchip for the manipulation and characterization of human malignant cells [J].
Cen, EG ;
Dalton, C ;
Li, YL ;
Adamia, S ;
Pilarski, LM ;
Kaler, KVIS .
JOURNAL OF MICROBIOLOGICAL METHODS, 2004, 58 (03) :387-401
[6]   Dielectrophoresis in microfluidics technology [J].
Cetin, Barbaros ;
Li, Dongqing .
ELECTROPHORESIS, 2011, 32 (18) :2410-2427
[7]   Electrorotation of liposomes: verification of dielectric multi-shell model for cells [J].
Chan, KL ;
Gascoyne, PRC ;
Becker, FF ;
Pethig, R .
BIOCHIMICA ET BIOPHYSICA ACTA-LIPIDS AND LIPID METABOLISM, 1997, 1349 (02) :182-196
[8]   Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip [J].
Cheng, J ;
Sheldon, EL ;
Wu, L ;
Heller, MJ ;
O'Connell, JP .
ANALYTICAL CHEMISTRY, 1998, 70 (11) :2321-2326
[9]   THE ELECTRICAL BREAKDOWN OF CELL AND LIPID-MEMBRANES - THE SIMILARITY OF PHENOMENOLOGIES [J].
CHERNOMORDIK, LV ;
SUKHAREV, SI ;
POPOV, SV ;
PASTUSHENKO, VF ;
SOKIRKO, AV ;
ABIDOR, IG ;
CHIZMADZHEV, YA .
BIOCHIMICA ET BIOPHYSICA ACTA, 1987, 902 (03) :360-373
[10]   Tissue ablation with irreversible electroporation [J].
Davalos, RV ;
Mir, LM ;
Rubinsky, B .
ANNALS OF BIOMEDICAL ENGINEERING, 2005, 33 (02) :223-231