Global Wheat Head Detection (GWHD) Dataset: A Large and Diverse Dataset of High-Resolution RGB-Labelled Images to Develop and Benchmark Wheat Head Detection Methods

被引:146
作者
David, Etienne [1 ,2 ]
Madec, Simon [1 ,2 ]
Sadeghi-Tehran, Pouria [3 ]
Aasen, Helge [4 ]
Zheng, Bangyou [5 ]
Liu, Shouyang [2 ,6 ]
Kirchgessner, Norbert [4 ]
Ishikawa, Goro [7 ]
Nagasawa, Koichi [8 ]
Badhon, Minhajul A. [9 ]
Pozniak, Curtis [10 ]
de Solan, Benoit [1 ]
Hund, Andreas [4 ]
Chapman, Scott C. [5 ,11 ]
Baret, Frederic [2 ,6 ]
Stavness, Ian [9 ]
Guo, Wei [12 ]
机构
[1] Arvalis, Inst Vegetal, 3 Rue Joseph & Marie Hackin, F-75116 Paris, France
[2] INRAE, Ctr PACA, UMR1114 EMMAH, Batiment Climat,228 Route Aerodrome,CS 40509, F-84914 Avignon, France
[3] Rothamsted Res, Plant Sci Dept, Harpenden, Herts, England
[4] Swiss Fed Inst Technol, Inst Agr Sci, Univ Str 2, CH-8092 Zurich, Switzerland
[5] CSIRO Agr & Food, Queensland Biosci Precinct, 306 Carmody Rd, St Lucia, Qld 4067, Australia
[6] Nanjing Agr Univ, Plant Phen Res Ctr, Nanjing, Peoples R China
[7] Natl Agr & Food Res Org, Inst Crop Sci, Tsukuba, Ibaraki, Japan
[8] Natl Agr & Food Res Org, Hokkaido Agr Res Ctr, Tsukuba, Ibaraki, Japan
[9] Univ Saskatchewan, Dept Comp Sci, Saskatoon, SK, Canada
[10] Univ Saskatchewan, Dept Plant Sci, Saskatoon, SK, Canada
[11] Univ Queensland, Sch Food & Agr Sci, Gatton, Qld 4343, Australia
[12] Univ Tokyo, Grad Sch Agr & Life Sci, 1-1-1 Midori Cho, Tokyo, Japan
基金
英国生物技术与生命科学研究理事会;
关键词
Machine learning - Population statistics - Learning algorithms;
D O I
10.34133/2020/3521852
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The detection of wheat heads in plant images is an important task for estimating pertinent wheat traits including head population density and head characteristics such as health, size, maturity stage, and the presence of awns. Several studies have developed methods for wheat head detection from high-resolution RGB imagery based on machine learning algorithms. However, these methods have generally been calibrated and validated on limited datasets. High variability in observational conditions, genotypic differences, development stages, and head orientation makes wheat head detection a challenge for computer vision. Further, possible blurring due to motion or wind and overlap between heads for dense populations make this task even more complex. Through a joint international collaborative effort, we have built a large, diverse, and well-labelled dataset of wheat images, called the Global Wheat Head Detection (GWHD) dataset. It contains 4700 high-resolution RGB images and 190000 labelled wheat heads collected from several countries around the world at different growth stages with a wide range of genotypes. Guidelines for image acquisition, associating minimum metadata to respect FAIR principles, and consistent head labelling methods are proposed when developing new head detection datasets. The GWHD dataset is publicly available at http://www.global-wheat.com/and aimed at developing and benchmarking methods for wheat head detection.
引用
收藏
页数:12
相关论文
共 44 条
[1]  
Aich S., GLOBAL SUM POOLING G
[2]   A State-of-the-Art Survey on Deep Learning Theory and Architectures [J].
Alom, Md Zahangir ;
Taha, Tarek M. ;
Yakopcic, Chris ;
Westberg, Stefan ;
Sidike, Paheding ;
Nasrin, Mst Shamima ;
Hasan, Mahmudul ;
Van Essen, Brian C. ;
Awwal, Abdul A. S. ;
Asari, Vijayan K. .
ELECTRONICS, 2019, 8 (03)
[3]   Spectral Vegetation Indices to Track Senescence Dynamics in Diverse Wheat Germplasm [J].
Anderegg, Jonas ;
Yu, Kang ;
Aasen, Helge ;
Walter, Achim ;
Liebisch, Frank ;
Hund, Andreas .
FRONTIERS IN PLANT SCIENCE, 2020, 10
[4]  
[Anonymous], 2019, ADV CROP BREEDING TE
[5]   Why are wheat yields stagnating in Europe? A comprehensive data analysis for France [J].
Brisson, Nadine ;
Gate, Philippe ;
Gouache, David ;
Charmet, Gilles ;
Oury, Francois-Xavier ;
Huard, Frederic .
FIELD CROPS RESEARCH, 2010, 119 (01) :201-212
[6]  
Brooks J., 2019, COCO Annotator
[7]   Combining High-Throughput Phenotyping and Genomic Information to Increase Prediction and Selection Accuracy in Wheat Breeding [J].
Crain, Jared ;
Mondal, Suchismita ;
Rutkoski, Jessica ;
Singh, Ravi P. ;
Poland, Jesse .
PLANT GENOME, 2018, 11 (01)
[8]   Measures for interoperability of phenotypic data: minimum information requirements and formatting [J].
Cwiek-Kupczynska, Hanna ;
Altmann, Thomas ;
Arend, Daniel ;
Arnaud, Elizabeth ;
Chen, Dijun ;
Cornut, Guillaume ;
Fiorani, Fabio ;
Frohmberg, Wojciech ;
Junker, Astrid ;
Klukas, Christian ;
Lange, Matthias ;
Mazurek, Cezary ;
Nafissi, Anahita ;
Neveu, Pascal ;
van Oeveren, Jan ;
Pommier, Cyril ;
Poorter, Hendrik ;
Rocca-Serra, Philippe ;
Sansone, Susanna-Assunta ;
Scholz, Uwe ;
van Schriek, Marco ;
Seren, Umit ;
Usadel, Bjorn ;
Weise, Stephan ;
Kersey, Paul ;
Krajewski, Pawel .
PLANT METHODS, 2016, 12
[9]   PKLot - A robust dataset for parking lot classification [J].
de Almeida, Paulo R. L. ;
Oliveira, Luiz S. ;
Britto, Alceu S., Jr. ;
Silva, Eunelson J., Jr. ;
Koerich, Alessandro L. .
EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (11) :4937-4949
[10]   A Weakly Supervised Deep Learning Framework for Sorghum Head Detection and Counting [J].
Ghosal, Sambuddha ;
Zheng, Bangyou ;
Chapman, Scott C. ;
Potgieter, Andries B. ;
Jordan, David R. ;
Wang, Xuemin ;
Singh, Asheesh K. ;
Singh, Arti ;
Hirafuji, Masayuki ;
Ninomiya, Seishi ;
Ganapathysubramanian, Baskar ;
Sarkar, Soumik ;
Guo, Wei .
PLANT PHENOMICS, 2019, 2019