LARGE DEVIATION PRINCIPLES FOR GENERALIZED FEYNMAN-KAC FUNCTIONALS AND ITS APPLICATIONS

被引:7
作者
Kim, Daehong [1 ]
Kuwae, Kazuhiro [2 ]
Tawara, Yoshihiro [3 ]
机构
[1] Kumamoto Univ, Grad Sch Sci & Technol, Dept Math & Engn, Kumamoto 8608555, Japan
[2] Fukuoka Univ, Fac Sci, Dept Math, Fukuoka 8140180, Japan
[3] Nagaoka Natl Coll Technol, Div Gen Educ, 888 Nishikatakai, Nagaoka, Niigata 9408532, Japan
基金
日本学术振兴会;
关键词
Large deivation principle; Feynman-Kac semigroup; symmetric Markov processes; Dirichlet forms; occupation distribution; spectral bound; additive functional; continuous additive functional of zero energy; Kato class; local Kato class; extended Kato class; Feller property; strong Feller property; doubly Feller property; L-P-INDEPENDENCE; SYMMETRIC MARKOV-PROCESSES; ASYMPTOTIC PROPERTIES; ADDITIVE-FUNCTIONALS; SPECTRAL BOUNDS; ABSOLUTE CONTINUITY; STOCHASTIC CALCULUS; DIRICHLET FORMS; GREEN-FUNCTION; SEMIGROUPS;
D O I
10.2748/tmj/1466172769
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Large deviation principles of occupation distribution for generalized Feynman-Kac functionals are presented in the framework of symmetric Markov processes having doubly Feller or strong Feller property. As a consequence, we obtain the LP-independence of spectral radius of our generalized Feynman-Kac functionals. We also prove Fukushima's decomposition in the strict sense for functions locally in the domain of Dirichlet form having energy measure of Dynkin class without assuming no inside killing.
引用
收藏
页码:161 / 197
页数:37
相关论文
共 45 条
[1]  
[Anonymous], STOCH STOCH REP
[2]  
[Anonymous], 2006, Adv. Stud. Pure Math
[3]  
[Anonymous], 1994, DEGRUYTER STUDIES MA
[4]  
AZENCOTT R, 1974, B SOC MATH FR, V102, P193
[5]  
Blumenthal RM., 1960, T AM MATH SOC, V95, P263, DOI [DOI 10.1090/S0002-9947-1960-0119247-6, 10.1090/S0002-9947-1960-0119247-6]
[6]   Stochastic calculus for symmetric Markov processes [J].
Chen, Z. -Q. ;
Fitzsimmons, P. J. ;
Kuwae, K. ;
Zhang, T. -S. .
ANNALS OF PROBABILITY, 2008, 36 (03) :931-970
[7]   On general perturbations of symmetric Markov processes [J].
Chen, Z. -Q. ;
Fitzsimmons, P. J. ;
Kuwae, K. ;
Zhang, T. -S. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 92 (04) :363-374
[8]  
CHEN Z.-Q., 2012, STOCHASTIC ANAL APPL
[9]   LP-independence of spectral bounds of generalized non-local Feynman-Kac semigroups [J].
Chen, Zhen-Qing .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (09) :4120-4139
[10]  
Chen ZQ, 2009, OSAKA J MATH, V46, P909