Lipschitz and Fourier type conditions with moduli of continuity in rank 1 symmetric spaces

被引:5
作者
Fernandez, Arran [1 ]
Restrepo, Joel E. [2 ,3 ]
Suragan, Durvudkhan [2 ]
机构
[1] Eastern Mediterranean Univ, Dept Math, Via Mersin 10, Famagusta, Northern Cyprus, Turkey
[2] Nazarbayev Univ, Dept Math, Nur Sultan, Kazakhstan
[3] Univ Antioquia, Inst Math, Medellin, Colombia
来源
MONATSHEFTE FUR MATHEMATIK | 2022年 / 197卷 / 02期
关键词
Generalised Holder space; Lipschitz type condition; Fourier transform; Moduli of continuity; Translation operator; Symmetric space; GROWTH-PROPERTIES; TRANSFORMS;
D O I
10.1007/s00605-021-01621-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sufficient and necessary results have been proven on Lipschitz type integral conditions and bounds of its Fourier transform for an L-2 function, in the setting of Riemannian symmetric spaces of rank 1 whose growth depends on a kth-order modulus of continuity.
引用
收藏
页码:353 / 364
页数:12
相关论文
共 15 条
[1]  
[Anonymous], 1982, Nauka
[2]  
Bary NK., 1956, T MOSK MAT OBSHCH, V5, P483
[3]   Growth properties of Fourier transforms via moduli of continuity [J].
Bray, William O. ;
Pinsky, Mark A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (09) :2265-2285
[4]   Titchmarsh theorems for Fourier transforms of Holder-Lipschitz functions on compact homogeneous manifolds [J].
Daher, Radouan ;
Delgado, Julio ;
Ruzhansky, Michael .
MONATSHEFTE FUR MATHEMATIK, 2019, 189 (01) :23-49
[5]  
Gel fand I. M., 1955, T MOSKOV MAT OBS C, V4, P375
[6]  
GELFAND IM, 1953, DOKL AKAD NAUK SSSR+, V92, P461
[7]   Moduli of smoothness and growth properties of Fourier transforms: Two-sided estimates [J].
Gorbachev, Dmitry ;
Tikhonov, Sergey .
JOURNAL OF APPROXIMATION THEORY, 2012, 164 (09) :1283-1312
[8]   A DUALITY FOR SYMMETRIC SPACES WITH APPLICATIONS TO GROUP REPRESENTATIONS [J].
HELGASON, S .
ADVANCES IN MATHEMATICS, 1970, 5 (01) :1-&
[9]  
Helgason S., 1994, MATH SURVEYS MONOGRA, V39, DOI DOI 10.1090/SURV/039
[10]  
Helgason S., 1987, Groups and geometric analysis: integral geometry, invariant differential operators, and spherical functions