A COMPLETE CHARACTERIZATION OF BIRKHOFF-JAMES ORTHOGONALITY IN INFINITE DIMENSIONAL NORMED SPACE

被引:27
作者
Sain, Debmalya [1 ]
Paul, Kallol [2 ]
Mal, Arpita [2 ]
机构
[1] Indian Inst Sci, Dept Math, Bengaluru 560012, India
[2] Jadavpur Univ, Dept Math, Kolkata 700032, India
关键词
Orthogonality; linear operators; norm attainment; smoothness; SMOOTH POINTS; OPERATORS; MAPPINGS;
D O I
10.7900/jot.2017oct20.2190
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study Birkhoff-James orthogonality of bounded linear operators and give a complete characterization of Birkhoff-James orthogonality of bounded linear operators on infinite dimensional real normed linear spaces. As an application of the results obtained, we prove a simple but useful characterization of Birkhoff-James orthogonality of bounded linear functionals defined on a real normed linear space, provided the dual space is strictly convex. We also provide separate necessary and sufficient conditions for smoothness of bounded linear operators on infinite dimensional normed linear spaces.
引用
收藏
页码:399 / 413
页数:15
相关论文
共 23 条
[1]   NORM DERIVATIVES ON SPACES OF OPERATORS [J].
ABATZOGLOU, TJ .
MATHEMATISCHE ANNALEN, 1979, 239 (02) :129-135
[2]   Orthogonality of matrices and some distance problems [J].
Bhatia, R ;
Semrl, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 287 (1-3) :77-85
[3]  
Birkhoff G., 1935, Duke Math. J., V1, P169, DOI [10.1215/S0012-7094-35-00115-6. h17i, DOI 10.1215/S0012-7094-35-00115-6.H17I]
[4]   Linear mappings approximately preserving orthogonality [J].
Chmielinski, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (01) :158-169
[5]   REMARKS ON ORTHOGONALITY PRESERVING MAPPINGS IN NORMED SPACES AND SOME STABILITY PROBLEMS [J].
Chmielinski, Jacek .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2007, 1 (01) :117-124
[6]   EXPOSED AND SMOOTH POINTS OF SOME CLASSES OF OPERATION IN L(IP) [J].
DEEB, W ;
KHALIL, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 103 (02) :217-228
[7]  
Giles JR., 1978, J AUSTR MATH SOC A, V26, P302
[8]  
Heinrich S., 1975, Funct. Anal. Appl., V9, P93
[9]  
Heinrich S., 1975, FUNCT ANAL APPL, V9, P360
[10]   SMOOTH, COMPACT OPERATORS [J].
HENNEFELD, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 77 (01) :87-90