Semiconductor to metal transition in bilayer phosphorene under normal compressive strain

被引:89
作者
Manjanath, Aaditya [1 ,2 ]
Samanta, Atanu [1 ]
Pandey, Tribhuwan [1 ]
Singh, Abhishek K. [1 ]
机构
[1] Indian Inst Sci, Mat Res Ctr, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Ctr Nano Sci & Engn, Bangalore 560012, Karnataka, India
关键词
DFT; phosphorene; normal compressive strain; TOTAL-ENERGY CALCULATIONS; MOBILITY; SI;
D O I
10.1088/0957-4484/26/7/075701
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Phosphorene, a two-dimensional analog of black phosphorous, has been a subject of immense interest recently, due to its high carrier mobilities and a tunable bandgap. So far, tunability has been predicted to be obtained with very high compressive/tensile in-plane strains, and vertical electric field, which are difficult to achieve experimentally. Here, we show using density functional theory based calculations the possibility of tuning electronic properties by applying normal compressive strain in bilayer phosphorene. A complete and fully reversible semiconductor to metal transition has been observed at similar to 13.35% strain, which can be easily realized experimentally. Furthermore, a direct to indirect bandgap transition has also been observed at similar to 3% strain, which is a signature of unique band-gap modulation pattern in this material. The absence of negative frequencies in phonon spectra as a function of strain demonstrates the structural integrity of the sheets at relatively higher strain range. The carrier mobilities and effective masses also do not change significantly as a function of strain, keeping the transport properties nearly unchanged. This inherent ease of tunability of electronic properties without affecting the excellent transport properties of phosphorene sheets is expected to pave way for further fundamental research leading to phosphorene-based multi-physics devices.
引用
收藏
页数:8
相关论文
共 32 条
  • [1] Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS2
    Bhattacharyya, Swastibrata
    Pandey, Tribhuwan
    Singh, Abhishek K.
    [J]. NANOTECHNOLOGY, 2014, 25 (46)
  • [2] Semiconductor-metal transition in semiconducting bilayer sheets of transition-metal dichalcogenides
    Bhattacharyya, Swastibrata
    Singh, Abhishek K.
    [J]. PHYSICAL REVIEW B, 2012, 86 (07)
  • [3] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [4] Cahir D, 2014, PHYS REV B, V90
  • [5] Isolation and characterization of few-layer black phosphorus
    Castellanos-Gomez, Andres
    Vicarelli, Leonardo
    Prada, Elsa
    Island, Joshua O.
    Narasimha-Acharya, K. L.
    Blanter, Sofya I.
    Groenendijk, Dirk J.
    Buscema, Michele
    Steele, Gary A.
    Alvarez, J. V.
    Zandbergen, Henny W.
    Palacios, J. J.
    van der Zant, Herre S. J.
    [J]. 2D MATERIALS, 2014, 1 (02):
  • [6] Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells
    Dai, Jun
    Zeng, Xiao Cheng
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (07): : 1289 - 1293
  • [7] The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory
    Ellis, Jason K.
    Lucero, Melissa J.
    Scuseria, Gustavo E.
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (26)
  • [8] QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
    Giannozzi, Paolo
    Baroni, Stefano
    Bonini, Nicola
    Calandra, Matteo
    Car, Roberto
    Cavazzoni, Carlo
    Ceresoli, Davide
    Chiarotti, Guido L.
    Cococcioni, Matteo
    Dabo, Ismaila
    Dal Corso, Andrea
    de Gironcoli, Stefano
    Fabris, Stefano
    Fratesi, Guido
    Gebauer, Ralph
    Gerstmann, Uwe
    Gougoussis, Christos
    Kokalj, Anton
    Lazzeri, Michele
    Martin-Samos, Layla
    Marzari, Nicola
    Mauri, Francesco
    Mazzarello, Riccardo
    Paolini, Stefano
    Pasquarello, Alfredo
    Paulatto, Lorenzo
    Sbraccia, Carlo
    Scandolo, Sandro
    Sclauzero, Gabriele
    Seitsonen, Ari P.
    Smogunov, Alexander
    Umari, Paolo
    Wentzcovitch, Renata M.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)
  • [9] DENSITY-FUNCTIONAL APPROACH TO NONLINEAR-RESPONSE COEFFICIENTS OF SOLIDS
    GONZE, X
    VIGNERON, JP
    [J]. PHYSICAL REVIEW B, 1989, 39 (18): : 13120 - 13128
  • [10] A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
    Grimme, Stefan
    Antony, Jens
    Ehrlich, Stephan
    Krieg, Helge
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)