On the Cauchy problem for a coupled system of third-order nonlinear Schrodinger equations

被引:3
作者
Braganca, L. M. [2 ]
Scialom, M. [1 ]
机构
[1] Univ Estadual Campinas, IMECC, BR-13083859 Campinas, SP, Brazil
[2] Univ Fed Vicosa, IDMA, BR-36570000 Vicosa, MG, Brazil
关键词
Coupled system of third-order nonlinear Schrodinger equations; Cauchy problem; Local and global well-posedness; GLOBAL WELL-POSEDNESS; SOLITON-SOLUTIONS; DISPERSIVE EQUATIONS; HIROTA EQUATION; PROPAGATION; OPTICS;
D O I
10.1016/j.na.2010.06.065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate some well-posedness issues for the initial value problem (IVP) associated with the system {2i partial derivative(t)u + q partial derivative(2)(x)u + i gamma partial derivative(3)(x)u = F(1)(u, w) 2i partial derivative(t)w + q partial derivative(2)(x)w + i gamma partial derivative(3)(x) = F(2)(u, w), where F(1) and F(2) are polynomials of degree 3 involving u, w and their derivatives. This system describes the dynamics of two nonlinear short-optical pulse envelopes w(x, t) and w(x, t) in fibers (Porsezian et al. (1994) [1] and Hasegawa & Kodama (1987) [2]). We prove sharp local well-posedness result for the IVP with data in Sobolev spaces H(s)(R) x H(s)(R), s >= 1/4 and global well-posedness result with data in Sobolev spaces H(s)(R) x H(s)(R), s > 3/5. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2991 / 3003
页数:13
相关论文
共 23 条
[1]   Dark soliton solutions of the coupled Hirota equation in nonlinear fiber [J].
Bindu, SG ;
Mahalingam, A ;
Porsezian, K .
PHYSICS LETTERS A, 2001, 286 (05) :321-331
[2]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
[3]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107
[4]  
Bourgain J., 1993, The KdV equations, GAGA, V3, P209, DOI 10.1007/BF01895688
[5]  
BRAGANCA LM, 2007, THESIS U ESTADUAL CA
[6]   Sharp global well-posedness for a higher order Schrodinger equation [J].
Carvajal, X .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2006, 12 (01) :53-70
[7]  
Carvajal X., 2004, EJDE, V13, P1
[8]  
CARVAJAL X, 2002, THESIS I MATEMATICA
[9]  
Carvajal X., 2003, Differ. Int. Equ, V16, P1111
[10]   Global well-posedness for the modified Korteweg-de Vries equation [J].
Fonseca, G ;
Linares, F ;
Ponce, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (3-4) :683-705