An integrated computational framework for simulating the failure response of carbon fiber reinforced polymer composites

被引:12
作者
Ahmadian, Hossein [1 ]
Liang, Bowen [2 ]
Soghrati, Soheil [2 ,3 ]
机构
[1] Ohio State Univ, Dept Integrated Syst Engn, 1971 Neil Ave, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Mech & Aerosp Engn, 201 W 19th Ave, Columbus, OH 43210 USA
[3] Ohio State Univ, Dept Mat Sci & Engn, 201 W 19th Ave, Columbus, OH 43210 USA
关键词
Mesh generation; CISAMR; Fiber reinforced composite; Microstructure reconstruction; Damage; FINITE-ELEMENT-METHOD; 3-DIMENSIONAL MESH GENERATION; PARTICLE SPATIAL-DISTRIBUTION; X-RAY MICROTOMOGRAPHY; MICROSTRUCTURE RECONSTRUCTION; GENETIC ALGORITHMS; HETEROGENEOUS MATERIALS; TRANSVERSE COMPRESSION; MULTIOBJECTIVE OPTIMIZATION; MICROMECHANICAL ANALYSIS;
D O I
10.1007/s00466-017-1457-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new computational framework is introduced for the automated finite element (FE) modeling of fiber reinforced composites and simulating their micromechanical behavior. The proposed methodology relies on a new microstructure reconstruction algorithm that implements the centroidal Voronoi tessellation (CVT) to generate an initial uniform distribution of fibers with desired volume fraction and size distribution in a repeating unit cell of the composite. The genetic algorithm (GA) is then employed to optimize locations of fibers such that they replicate the target spatial arrangement. We also use a non-iterative mesh generation algorithm, named conforming to interface structured adaptive mesh refinement (CISAMR), to create FE models of the CFRPC. The CVT-GA-CISAMR framework is then employed to investigate the appropriate size of the composite's representative volume element. We also study the strength and failure mechanisms in the CFRPC subject to varying uniaxial and mixed-mode loadings.
引用
收藏
页码:1033 / 1055
页数:23
相关论文
共 113 条
[1]  
[Anonymous], 2005, CARBON FIBERS THEIR
[2]  
[Anonymous], 2002, DESIGN INNOVATION
[3]   Numerical simulation of the effect of particle spatial distribution and strength on tensile behavior of particle reinforced composites [J].
Ayyar, A. ;
Crawford, G. A. ;
Williams, J. J. ;
Chawla, N. .
COMPUTATIONAL MATERIALS SCIENCE, 2008, 44 (02) :496-506
[4]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO
[5]  
2-N
[6]   ROBUST, GEOMETRICALLY BASED, AUTOMATIC TWO-DIMENSIONAL MESH GENERATION [J].
BAEHMANN, PL ;
WITTCHEN, SL ;
SHEPHARD, MS ;
GRICE, KR ;
YERRY, MA .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1987, 24 (06) :1043-1078
[7]   Three-dimensional reconstruction and homogenization of heterogeneous materials using statistical correlation functions and FEM [J].
Baniassadi, M. ;
Mortazavi, B. ;
Hamedani, H. Amani ;
Garmestani, H. ;
Ahzi, S. ;
Fathi-Torbaghan, M. ;
Ruch, D. ;
Khaleel, M. .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 51 (01) :372-379
[8]  
Bansal P. P., 1972, Metallography, V5, P97, DOI 10.1016/0026-0800(72)90048-1
[9]  
BEASLEY D, 1993, U COMPUT, V15, P58
[10]   A review of extended/generalized finite element methods for material modeling [J].
Belytschko, Ted ;
Gracie, Robert ;
Ventura, Giulio .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2009, 17 (04)