Stress signaling and cellular proliferation reverse the effects of mitochondrial mistranslation

被引:24
作者
Ferreira, Nicola [1 ,2 ]
Perks, Kara L. [1 ,2 ]
Rossetti, Giulia [1 ,2 ]
Rudler, Danielle L. [1 ,2 ]
Hughes, Laetitia A. [1 ,2 ]
Ermer, Judith A. [1 ,2 ]
Scott, Louis H. [1 ,2 ]
Kuznetsova, Irina [1 ,2 ]
Richman, Tara R. [1 ,2 ]
Narayana, Vinod K. [3 ]
Abudulai, Laila N. [4 ,5 ,6 ]
Shearwood, Anne-Marie J. [1 ,2 ]
Cserne Szappanos, Henrietta [7 ]
Tull, Dedreia [3 ]
Yeoh, George C. [1 ,2 ,5 ]
Hool, Livia C. [7 ,8 ]
Filipovska, Aleksandra [1 ,2 ,5 ]
Rackham, Oliver [1 ,9 ,10 ]
机构
[1] Harry Perkins Inst Med Res, Nedlands, WA, Australia
[2] Univ Western Australia, Ctr Med Res, Crawley, WA, Australia
[3] Univ Melbourne, Bio21 Inst Mol Sci & Biotechnol, Metabol Australia, Parkville, Vic, Australia
[4] Univ Western Australia, Ctr Microscopy Characterisat & Anal, Perth, WA, Australia
[5] Univ Western Australia, Sch Mol Sci, Crawley, WA, Australia
[6] Univ Western Australia, Sch Biomed Sci, Nedlands, WA, Australia
[7] Univ Western Australia, Sch Human Sci Physiol, Crawley, WA, Australia
[8] Victor Chang Cardiac Res Inst, Darlinghurst, NSW, Australia
[9] Curtin Univ, Sch Pharm & Biomed Sci, Bentley, WA, Australia
[10] Curtin Univ, Curtin Hlth Innovat Res Inst, Bentley, WA, Australia
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
metabolism; mitochondria; mitochondrial ribosome; protein synthesis; stress response; MTDNA COPY NUMBER; RNA; TRANSLATION; CYCLE; BIOGENESIS; STARVATION; PRODUCTS;
D O I
10.15252/embj.2019102155
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Translation fidelity is crucial for prokaryotes and eukaryotic nuclear-encoded proteins; however, little is known about the role of mistranslation in mitochondria and its potential effects on metabolism. We generated yeast and mouse models with error-prone and hyper-accurate mitochondrial translation, and found that translation rate is more important than translational accuracy for cell function in mammals. Specifically, we found that mitochondrial mistranslation causes reduced overall mitochondrial translation and respiratory complex assembly rates. In mammals, this effect is compensated for by increased mitochondrial protein stability and upregulation of the citric acid cycle. Moreover, this induced mitochondrial stress signaling, which enables the recovery of mitochondrial translation via mitochondrial biogenesis, telomerase expression, and cell proliferation, and thereby normalizes metabolism. Conversely, we show that increased fidelity of mitochondrial translation reduces the rate of protein synthesis without eliciting a mitochondrial stress response. Consequently, the rate of translation cannot be recovered and this leads to dilated cardiomyopathy in mice. In summary, our findings reveal mammalian-specific signaling pathways that respond to changes in the fidelity of mitochondrial protein synthesis and affect metabolism.
引用
收藏
页数:19
相关论文
共 64 条
  • [1] Error-Prone and Error-Restrictive Mutations Affecting Ribosomal Protein S12
    Agarwal, Deepali
    Gregory, Steven T.
    O'Connor, Michael
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2011, 410 (01) : 1 - 9
  • [2] Mutant MRPS5 affects mitoribosomal accuracy and confers stress-related behavioral alterations
    Akbergenov, Rashid
    Duscha, Stefan
    Fritz, Ann-Kristina
    Juskeviciene, Reda
    Oishi, Naoki
    Schmitt, Karen
    Shcherbakov, Dimitri
    Teo, Youjin
    Boukari, Heithem
    Freihofer, Pietro
    Isnard-Petit, Patricia
    Oettinghaus, Bjorn
    Frank, Stephan
    Thiam, Kader
    Rehrauer, Hubert
    Westhof, Eric
    Schacht, Jochen
    Eckert, Anne
    Wolfer, David
    Bottger, Erik C.
    [J]. EMBO REPORTS, 2018, 19 (11)
  • [3] The structure of the human mitochondrial ribosome
    Amunts, Alexey
    Brown, Alan
    Toots, Jaan
    Scheres, Sjors H. W.
    Ramakrishnan, V.
    [J]. SCIENCE, 2015, 348 (6230) : 95 - 98
  • [4] Mitochondrial dysfunction remodels one - carbon metabolism in human cells
    Bao, Xiaoyan Robert
    Ong, Shao-En
    Goldberger, Olga
    Peng, Jun
    Sharma, Rohit
    Thompson, Dawn A.
    Vafai, Scott B.
    Cox, Andrew G.
    Marutani, Eizo
    Ichinose, Fumito
    Goessling, Wolfram
    Regev, Aviv
    Carr, Steven A.
    Clish, Clary B.
    Mootha, Vamsi K.
    [J]. ELIFE, 2016, 5
  • [5] The Mitochondrial Proteome and Human Disease
    Calvo, Sarah E.
    Mootha, Vamsi K.
    [J]. ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, VOL 11, 2010, 11 : 25 - 44
  • [6] MTERF4 Regulates Translation by Targeting the Methyltransferase NSUN4 to the Mammalian Mitochondrial Ribosome
    Camara, Yolanda
    Asin-Cayuela, Jorge
    Park, Chan Bae
    Metodiev, Metodi B.
    Shi, Yonghong
    Ruzzenente, Benedetta
    Kukat, Christian
    Habermann, Bianca
    Wibom, Rolf
    Hultenby, Kjell
    Franz, Thomas
    Erdjument-Bromage, Hediye
    Tempst, Paul
    Hallberg, B. Martin
    Gustafsson, Claes M.
    Larsson, Nils-Goran
    [J]. CELL METABOLISM, 2011, 13 (05) : 527 - 539
  • [7] Polyploidy and liver proliferation Central role of insulin signaling
    Celton-Morizur, Severine
    Merlen, Gregory
    Couton, Dominique
    Desdouets, Chantal
    [J]. CELL CYCLE, 2010, 9 (03) : 460 - 466
  • [8] The structure of the yeast mitochondrial ribosome
    Desai, Nirupa
    Brown, Alan
    Amunts, Alexey
    Ramakrishnan, V.
    [J]. SCIENCE, 2017, 355 (6324) : 528 - 531
  • [9] Mitochondrial transcription factor A regulates mtDNA copy number in mammals
    Ekstrand, MI
    Falkenberg, M
    Rantanen, A
    Park, CB
    Gaspari, M
    Hultenby, K
    Rustin, P
    Gustafsson, CM
    Larsson, NG
    [J]. HUMAN MOLECULAR GENETICS, 2004, 13 (09) : 935 - 944
  • [10] Gietz R Daniel, 2006, Methods Mol Biol, V313, P107