Functional data analysis characterizes the shapes of the first COVID-19 epidemic wave in Italy

被引:32
作者
Boschi, Tobia [1 ,2 ]
Di Iorio, Jacopo [3 ,4 ]
Testa, Lorenzo [3 ,4 ]
Cremona, Marzia A. [1 ,2 ,5 ,6 ]
Chiaromonte, Francesca [1 ,2 ,3 ,4 ]
机构
[1] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[2] Penn State Univ, Huck Inst Life Sci, University Pk, PA 16802 USA
[3] St Anna Sch Adv Studies, Inst Econ, I-56127 Pisa, Italy
[4] St Anna Sch Adv Studies, EMbeDS, I-56127 Pisa, Italy
[5] Univ Laval, Dept Operat & Decis Syst, Quebec City, PQ G1V 0A6, Canada
[6] Univ Laval, Res Ctr, CHU Quebec, Quebec City, PQ G1V 4G2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1038/s41598-021-95866-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate patterns of COVID-19 mortality across 20 Italian regions and their association with mobility, positivity, and socio-demographic, infrastructural and environmental covariates. Notwithstanding limitations in accuracy and resolution of the data available from public sources, we pinpoint significant trends exploiting information in curves and shapes with Functional Data Analysis techniques. These depict two starkly different epidemics; an "exponential" one unfolding in Lombardia and the worst hit areas of the north, and a milder, "flat(tened)" one in the rest of the country-including Veneto, where cases appeared concurrently with Lombardia but aggressive testing was implemented early on. We find that mobility and positivity can predict COVID-19 mortality, also when controlling for relevant covariates. Among the latter, primary care appears to mitigate mortality, and contacts in hospitals, schools and workplaces to aggravate it. The techniques we describe could capture additional and potentially sharper signals if applied to richer data.
引用
收藏
页数:15
相关论文
共 56 条
[11]  
Ciminelli G., 2020, J PUBLIC HEALTH-UK
[12]  
Cintia P., 2020, ARXIV PREPRINT ARXIV
[13]   Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID [J].
Coccia, Mario .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 729
[14]  
Cortes, 2020, REV PERU INVESTIG SA, V4, P87, DOI [https://doi.org/10.35839/repis.4.2.697, DOI 10.35839/REPIS.4.2.697]
[15]   SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS [J].
WAHBA, G .
NUMERISCHE MATHEMATIK, 1975, 24 (05) :383-393
[16]  
Cremona M.A, 2020, ARXIV180804
[17]   Functional data analysis for computational biology [J].
Cremona, Marzia A. ;
Xu, Hongyan ;
Makova, Kateryna D. ;
Reimherr, Matthew ;
Chiaromonte, Francesca ;
Madrigal, Pedro .
BIOINFORMATICS, 2019, 35 (17) :3211-3213
[18]   IWTomics: testing high-resolution sequence-based 'Omics' data at multiple locations and scales [J].
Cremona, Marzia A. ;
Pini, Alessia ;
Cumbo, Fabio ;
Makova, Kateryna D. ;
Chiaromonte, Francesca ;
Vantini, Simone .
BIOINFORMATICS, 2018, 34 (13) :2289-2291
[19]   On the bias of H-scores for comparing biclusters, and how to correct it [J].
Di Iorio, Jacopo ;
Chiaromonte, Francesca ;
Cremona, Marzia A. .
BIOINFORMATICS, 2020, 36 (09) :2955-2957
[20]  
DiIorio J., 2019, MOX REPORT 462019