Some approximation properties of (p, q)-Bernstein operators

被引:0
作者
Kang, Shin Min [1 ,2 ]
Rafiq, Arif [3 ]
Acu, Ana-Maria [4 ]
Ali, Faisal [5 ]
Kwun, Young Chel [6 ]
机构
[1] Gyeongsang Natl Univ, Dept Math, Jinju 52828, South Korea
[2] Gyeongsang Natl Univ, RINS, Jinju 52828, South Korea
[3] Virtual Univ Pakistan, Dept Math & Stat, Lahore 54000, Pakistan
[4] Lucian Blaga Univ Sibiu, Dept Math & Informat, Str Dr I Ratiu 5-7, Sibiu 550012, Romania
[5] Bahauddin Zakariya Univ, Ctr Adv Studies Pure & Appl Math, Multan 60800, Pakistan
[6] Dong A Univ, Dept Math, Busan 49315, South Korea
关键词
(p; q)-Bernstein operators; q)-calculus; Voronovskaja type theorem; K-functional; Ditzian-Totik first order modulus of smoothness;
D O I
10.1186/s13660-016-1111-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the (p, q)-analog of Bernstein operators. It is proved that, when the function is convex, the (p, q)-Bernstein operators are monotonic decreasing, as in the classical case. Also, some numerical examples based on Maple algorithms that verify these properties are considered. A global approximation theorem by means of the Ditzian-Totik modulus of smoothness and a Voronovskaja type theorem are proved.
引用
收藏
页数:10
相关论文
共 19 条
[1]   (p,q)-Generalization of Szasz-Mirakyan operators [J].
Acar, Tuncer .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (10) :2685-2695
[2]   On Pointwise Convergence of q-Bernstein Operators and Their q-Derivatives [J].
Acar, Tuncer ;
Aral, Ali .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (03) :287-304
[3]   Approximation Properties of Bivariate Extension of q-Bernstein-Schurer-Kantorovich operators [J].
Acu, Ana Maria ;
Muraru, Carmen Violeta .
RESULTS IN MATHEMATICS, 2015, 67 (3-4) :265-279
[4]   Stancu-Schurer-Kantorovich operators based on q-integers [J].
Acu, Ana Maria .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 :896-907
[5]   On a q-analogue of Stancu operators [J].
Agratini, Octavian .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (01) :191-198
[6]  
[Anonymous], 1987, Seminar on numerical and statistical calculus
[7]  
[Anonymous], 1995, J. Nonlinear Math. Phys.
[8]  
Aral A., 2013, Applications of q-Calculus in Operator Theory
[9]   Bernstein-type operators which preserve polynomials [J].
Cardenas-Morales, D. ;
Garrancho, P. ;
Rasa, I. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (01) :158-163
[10]  
Ditzian Z., 1987, Springer Series in Computational Mathematics