Gender Identification Through Facebook Data Analysis Using Machine Learning Techniques

被引:3
作者
Kiratsa, P. I. [1 ]
Sidiropoulos, G. K. [1 ]
Badeka, E. V. [1 ]
Papadopoulou, C. I. [1 ]
Nikolaou, A. P. [1 ]
Papakostas, G. A. [1 ]
机构
[1] Eastern Macedonia & Thrace Inst Technol, HUMAIN Lab, Dept Comp & Informat, Kavala, Greece
来源
22ND PAN-HELLENIC CONFERENCE ON INFORMATICS (PCI 2018) | 2018年
关键词
gender identification; facebook profile; machine learning methods; data mining techniques; social networks;
D O I
10.1145/3291533.3291591
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose of this paper is to analyze Facebook users' profile aiming at identifying the gender of the profile's owner. To this end several machine learning models were adopted and applied on a representative set of features extracted from Facebook profiles describing users' preferences relative to their gender information. This study concludes that there is a plethora of features which can be mined from a Facebook profile and can be used in identifying the gender of a profile's owner. Moreover, the experiments reveal that this gender identification task can be accomplished effectively by using machine learning techniques with 97.30% accuracy, after considering a large amount of Facebook profile data.
引用
收藏
页码:117 / 120
页数:4
相关论文
共 50 条
[31]   Improving Gender Identification in Movie Audio using Cross-Domain Data [J].
Hebbar, Rajat ;
Somandepalli, Krishna ;
Narayanan, Shrikanth .
19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES, 2018, :282-286
[32]   CONTROL OF THE PRODUCTIVITY AND THE RESERVOIR ENERGY STATE BY PROCESSING AND ANALYSIS OF PERMANENT DOWNHOLE GAUGES DATA USING MACHINE LEARNING [J].
Fatikhov, S. Z. ;
Mukhametshin, V. Sh. ;
Yakupov, R. F. ;
Yakupov, M. R. ;
Veliev, M. M. .
SOCAR PROCEEDINGS, 2024, :62-62
[33]   CONTROL OF THE PRODUCTIVITY AND THE RESERVOIR ENERGY STATE BY PROCESSING AND ANALYSIS OF PERMANENT DOWNHOLE GAUGES DATA USING MACHINE LEARNING [J].
Fatikhov, S. Z. ;
Mukhametshin, V. Sh. ;
Yakupov, R. F. ;
Yakupov, M. R. ;
Veliev, M. M. .
SOCAR PROCEEDINGS, 2024, :53-62
[34]   Assessment of land degradation using machine-learning techniques: A case of declining rangelands [J].
Yousefi, Saleh ;
Pourghasemi, Hamid Reza ;
Avand, Mohammadtaghi ;
Janizadeh, Saeid ;
Tavangar, Shahla ;
Santosh, M. .
LAND DEGRADATION & DEVELOPMENT, 2021, 32 (03) :1452-1466
[35]   Social Media Mining to Detect Online Violent Extremism using Machine Learning Techniques [J].
Mussiraliyeva, Shynar ;
Bagitova, Kalamkas ;
Sultan, Daniyar .
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) :1384-1393
[36]   Likelihood of Transformation to Green Infrastructure Using Ensemble Machine Learning Techniques in Jinan, China [J].
Gulshad, Khansa ;
Wang, Yicheng ;
Li, Na ;
Wang, Jing ;
Yu, Qian .
LAND, 2022, 11 (03)
[37]   Analysis and comparison of machine learning methods for blood identification using single-cell laser tweezer Raman spectroscopy [J].
Liu, Yiming ;
Wang, Ziqi ;
Zhou, Zhehai ;
Xiong, Tao .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 277
[38]   Mandatory social isolation: a sentiment analysis using machine learning [J].
Pastrana, Carlos Alberto Arango ;
Andrade, Carlos Fernando Osorio .
SUMA DE NEGOCIOS, 2021, 12 (26) :1-13
[39]   Sentiment classification of twitter data belonging to renewable energy using machine learning [J].
Jain, Achin ;
Jain, Vanita .
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2019, 40 (02) :521-533
[40]   Application of Machine Learning to Create a Recommendation in Social Communication Based on Data Analysis [J].
Bloshenkina, Alisa A. ;
Tcyguleva, Kseniya, V .
PROCEEDINGS OF THE 2021 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (ELCONRUS), 2021, :241-245