The quantitative impact of different leaf temperature determination on computed values of stomatal conductance and internal CO2 concentrations

被引:7
|
作者
Zhang, Lingling [1 ]
Zhang, Sheng [1 ,2 ]
机构
[1] Northwest A&F Univ, Coll Forestry, Yangling 712100, Shaanxi, Peoples R China
[2] Xinjiang Univ, Coll Life Sci & Technol, Urumqi 830046, Peoples R China
关键词
Infra-red temperature sensor; Intercellular CO2 concentration; Leaf temperature; LI-COR; 6400; Stomatal conductance; Photosynthesis; BOUNDARY-LAYER RESISTANCE; EMISSIVITY; TRANSPIRATION; DROUGHT; LEAVES; YIELD;
D O I
10.1016/j.agrformet.2019.107700
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The LI-COR 6400 portable photosynthesis system is the most widely used and cited instrument for measuring leaf gas exchange in plant physiology. The focus of this paper is to evaluate three ways of computing/measuring leaf temperature: the LI-COR energy budget computation, the LI-COR leaf thermocouple (T/C), and an infra-red (IR) sensor chip (MLX90615) incorporated into the LI-6400 leaf chamber. The IR-sensor was calibrated against known targets, and then used to cross check the other two methods. The results showed that the IR-sensor was superior to the LI-COR thermocouple and agreed closer with the energy budget values of leaf temperature. The magnitudes of the errors were quantified in terms of degrees C difference in leaf temperature measured by T/C (as control) and IR sensor versus percentage difference in stomatal conductance (g(s)) and intercellular CO2 concentration (C-i) computed from leaf temperature. The temperature difference (IR versus other methods) in the range of -1.89 to 1.58 degrees C resulted in relative errors in g(s) from 14.7% to -18.0% and C-i from 16.5% to -7.8% of the values reported by the standard LI-6400 calculations depending on species and temperature. Reasons are given for trusting the IR-sensor over the other methods and it is suggested that the next generation LI-COR photosynthesis system include an IR-sensor.
引用
收藏
页数:11
相关论文
共 39 条
  • [21] Using tunable diode laser spectroscopy to measure carbon isotope discrimination and mesophyll conductance to CO2 diffusion dynamically at different CO2 concentrations
    Tazoe, Youshi
    Von Caemmerer, Susanne
    Estavillo, Gonzalo M.
    Evans, John R.
    PLANT CELL AND ENVIRONMENT, 2011, 34 (04) : 580 - 591
  • [22] ASSOCIATION OF THE EFFECTS OF ELEVATED TEMPERATURE AND CO2 ON PLANT GROWTH AND LEAF PHOTOSYNTHESIS WITH CHANGES IN STOMATAL TRAITS, LEAF ANATOMY, AND FOLIAR CARBOHYDRATES IN WINTER WHEAT (TRITICUM AESTIVUM L.)
    Chang, Zhijie
    Hao, Lihua
    Han, Yi
    Fan, Xiaodong
    Zhang, Yunxin
    Tian, Yinshuai
    Liu, Liang
    Chen, Wenna
    Wang, Zhipeng
    Shi, Wei
    Yin, Jiawei
    Liu, Yuanyuan
    Zheng, Yunpu
    PAKISTAN JOURNAL OF BOTANY, 2023, 55 (01) : 79 - 90
  • [23] Impact of doubled CO2 on global-scale leaf area index and evapotranspiration:: Conflicting stomatal conductance and LAI responses -: art. no. 4808
    Kergoat, L
    Lafont, S
    Douville, H
    Berthelot, B
    Dedieu, G
    Planton, S
    Royer, JF
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D24) : ACL30 - 1
  • [24] Responses of leaf hydraulic traits of Schoenoplectus tabernaemontani to increasing temperature and CO2 concentrations
    Zhao, Yao
    Sun, Mei
    Guo, Huijun
    Feng, Chunhui
    Liu, Zhenya
    Xu, Junping
    BOTANICAL STUDIES, 2022, 63 (01)
  • [25] Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models
    Tomas, Magdalena
    Flexas, Jaume
    Copolovici, Lucian
    Galmes, Jeroni
    Hallik, Lea
    Medrano, Hipolito
    Ribas-Carbo, Miquel
    Tosens, Tiina
    Vislap, Vivian
    Niinemets, Uelo
    JOURNAL OF EXPERIMENTAL BOTANY, 2013, 64 (08) : 2269 - 2281
  • [26] Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilization
    Domec, Jean-Christophe
    Palmroth, Sari
    Ward, Eric
    Maier, Chris A.
    Therezien, M.
    Oren, Ram
    PLANT CELL AND ENVIRONMENT, 2009, 32 (11) : 1500 - 1512
  • [27] Does growth temperature affect the temperature responses of photosynthesis and internal conductance to CO2?: A test with Eucalyptus regnans
    Warren, C. R.
    TREE PHYSIOLOGY, 2008, 28 (01) : 11 - 19
  • [28] Temperature response of photosynthesis and internal conductance to CO2:: results from two independent approaches
    Warren, C. R.
    Dreyer, E.
    JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (12) : 3057 - 3067
  • [29] Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field
    Locke, Anna M.
    Sack, Lawren
    Bernacchi, Carl J.
    Ort, Donald R.
    ANNALS OF BOTANY, 2013, 112 (05) : 911 - 918
  • [30] A FIELD-STUDY OF THE EFFECTS OF ELEVATED CO2 ON CARBON ASSIMILATION, STOMATAL CONDUCTANCE AND LEAF AND BRANCH GROWTH OF PINUS-TAEDA TREES
    TESKEY, RO
    PLANT CELL AND ENVIRONMENT, 1995, 18 (05) : 565 - 573