Partial canonic sub-groups

被引:0
作者
Pilloni, Vincent [2 ]
Stroh, Benoit [1 ]
机构
[1] Univ Paris 13, LAGA, F-93430 Villetaneuse, France
[2] Columbia Univ, New York, NY 10027 USA
关键词
D O I
10.1007/s00229-010-0359-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The reduction of Siegel varieties modulo a prime number p is stratified by the multiplicative rank of the p-divisible group of the universal abelian variety. For r >= 0, the maximal multiplicative subgroup of the restriction of the p-torsion group of the universal abelian variety to the r-th stratum lifts canonically to the tube of this stratum and defines a "partial canonical subgroup of rank r". We show that there exists a strict neighbourhood of the tube on which this subgroup extends in a finite flat way. On the ordinary stratum and its neighbourhood, we recover the usuel canonical subgroup studied by Abbes and Mokrane, and Andreatta and Gasbarri.
引用
收藏
页码:19 / 39
页数:21
相关论文
共 14 条
[1]  
de Jong A.J., 1993, Journal of Algebraic Geometry, V2, P667
[2]  
Faltings G., 1990, Degeneration of abelian varieties, V22
[3]  
HARRIS M, 2001, GEOMETRY COHOMOLOGY, V151
[4]   REMMERT-STEIN THEOREM IN NON-ARCHIMEDIAN FUNCTION THEORY [J].
LUTKEBOHMERT, W .
MATHEMATISCHE ZEITSCHRIFT, 1974, 139 (01) :69-84
[5]  
OORT F, 1991, CR ACAD SCI I-MATH, V312, P385
[6]   Irreducibility of the siegel moduli spaces with parahoric level structure [J].
Yu, CF .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (48) :2593-2597
[7]  
[No title captured]
[8]  
[No title captured]
[9]  
[No title captured]
[10]  
[No title captured]