Detection of substances in food with 3D convolutional autoencoders

被引:4
作者
Anastasiadis, Johannes [1 ]
Leon, Fernando Puente [1 ]
机构
[1] Karlsruher Inst Technol, Inst Ind Informat Tech IIIT, Karlsruhe, Germany
关键词
Autoencoder; hyperspectral image; neural networks; three-dimensional convolution; CLASSIFICATION;
D O I
10.1515/teme-2018-0033
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Hyperspectral images contain very useful information because of their high spectral resolution, which can be used for non-contact food testing. However, to process them with convolutional neural networks, large data sets are needed. This is especially true if the data is not preprocessed and therefore of high dimension. However, relatively few hyperspectral data sets exist. To solve this problem, the neural network can be pre-trained using an autoencoder, which compresses and reconstructs the image. By minimizing the reconstruction error, useful features can be learned to solve the original task. In this work, spice mixtures are used to investigate whether individual components can be detected. In particular, a neural network using a 3D convolutional autoencoder is trained with a small data set.
引用
收藏
页码:S38 / S44
页数:7
相关论文
共 19 条
[1]  
[Anonymous], 2016, ARXIV150602351
[2]  
[Anonymous], HDB BRAIN THEORY NEU
[3]   Hyperspectral image unmixing involving spatial information by extending the alternating least-squares algorithm [J].
Bauer, Sebastian ;
Stefan, Johannes ;
Leon, Fernando Puente .
TM-TECHNISCHES MESSEN, 2015, 82 (04) :174-186
[4]   Hyperspectral classification based on spectral-spatial convolutional neural networks [J].
Chen, Congcong ;
Jiang, Feng ;
Yang, Chifu ;
Rho, Seungmin ;
Shen, Weizheng ;
Liu, Shaohui ;
Liu, Zhiguo .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2018, 68 :165-171
[5]   Deep Learning-Based Classification of Hyperspectral Data [J].
Chen, Yushi ;
Lin, Zhouhan ;
Zhao, Xing ;
Wang, Gang ;
Gu, Yanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2094-2107
[6]  
Erhan D, 2010, J MACH LEARN RES, V11, P625
[7]   Hyperspectral imaging - an emerging process analytical tool for food quality and safety control [J].
Gowen, A. A. ;
O'Donnell, C. P. ;
Cullen, P. J. ;
Downey, G. ;
Frias, J. M. .
TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2007, 18 (12) :590-598
[8]   Deep Convolutional Neural Networks for Hyperspectral Image Classification [J].
Hu, Wei ;
Huang, Yangyu ;
Wei, Li ;
Zhang, Fan ;
Li, Hengchao .
JOURNAL OF SENSORS, 2015, 2015
[9]  
Kingma D.P., 2014, INT C LEARN REP
[10]   Considering spectral variability for optical material abundance estimation [J].
Krippner, Wolfgang ;
Bauer, Sebastian ;
Leon, Fernando Puente .
TM-TECHNISCHES MESSEN, 2018, 85 (03) :149-158