First-Order System Least Squares Finite-Elements for Singularly Perturbed Reaction-Diffusion Equations

被引:5
作者
Adler, James H. [1 ]
MacLachlan, Scott [2 ]
Madden, Niall [3 ]
机构
[1] Tufts Univ, Dept Math, Medford, MA 02155 USA
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF, Canada
[3] Natl Univ Ireland Galway, Sch Math Stat & Appl Math, Galway, Ireland
来源
LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2019) | 2020年 / 11958卷
基金
加拿大自然科学与工程研究理事会;
关键词
First-order system least squares (FOSLS) finite elements; Singularly perturbed differential equations; Parameter-robust discretizations; REFINEMENT; FOSLS;
D O I
10.1007/978-3-030-41032-2_1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a new first-order-system least squares (FOSLS) finite-element discretization for singularly perturbed reaction-diffusion equations. Solutions to such problems feature layer phenomena, and are ubiquitous in many areas of applied mathematics and modelling. There is a long history of the development of specialized numerical schemes for their accurate numerical approximation. We follow a well-established practice of employing a priori layer-adapted meshes, but with a novel finite-element method that yields a symmetric formulation while also inducing a so-called "balanced" norm. We prove continuity and coercivity of the FOSLS weak form, present a suitable piecewise uniform mesh, and report on the results of numerical experiments that demonstrate the accuracy and robustness of the method.
引用
收藏
页码:3 / 14
页数:12
相关论文
共 16 条
[1]   A first-order system Petrov-Galerkin discretization for a reaction-diffusion problem on a fitted mesh [J].
Adler, James ;
MacLachlan, Scott ;
Madden, Niall .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (03) :1281-1309
[2]  
Berndt M., 1997, Electron. Trans. Numer. Anal., V6, P35
[3]   Parallel adaptive mesh refinement for first-order system least squares [J].
Brezina, M. ;
Garcia, J. ;
Manteuffel, T. ;
McCormick, S. ;
Ruge, J. ;
Tang, L. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2012, 19 (02) :343-366
[4]   1ST-ORDER SYSTEM LEAST-SQUARES FOR 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS .1. [J].
CAI, Z ;
LAZAROV, R ;
MANTEUFFEL, TA ;
MCCORMICK, SF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (06) :1785-1799
[5]   First-order system least squares for second-order partial differential equations .2. [J].
Cai, ZQ ;
Manteuffel, TA ;
McCormick, SF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (02) :425-454
[6]   Efficiency-based h- and hp-refinement strategies for finite element methods [J].
De Sterck, H. ;
Manteuffel, T. ;
McCormick, S. ;
Nolting, J. ;
Ruge, J. ;
Tang, L. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2008, 15 (2-3) :89-114
[7]   A ROBUST DPG METHOD FOR SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEMS [J].
Heuer, Norbert ;
Karkulik, Michael .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (03) :1218-1242
[8]   Weighted-norm first-order system least-squares (FOSLS) for div/curl systems with three dimensional edge singularities [J].
Lee, E. ;
Manteuffel, T. A. ;
Westphal, C. R. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (03) :1619-1639
[9]   Weighted-norm first-order system least squares (FOSLS) for problems with corner singularities [J].
Lee, E. ;
Manteuffel, T. A. ;
Westphal, C. R. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) :1974-1996
[10]   A BALANCED FINITE ELEMENT METHOD FOR SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEMS [J].
Lin, Runchang ;
Stynes, Martin .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) :2729-2743