A low frequency horizontal active vibration isolation bench for testing the performance of high-precision space inertial sensors

被引:17
作者
Yang, B. X. [1 ,2 ]
Liu, L. [1 ,2 ]
Wu, S. C. [1 ,2 ]
Li, H. Y. [1 ,2 ]
Zhou, Z. B. [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, MOE Key Lab Fundamental Phys Quant Measurement, Hubei Key Lab Gravitat & Quantum Phys, PGMF, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
inertial sensor; vibration isolation; seismic noise; SEISMIC ISOLATION;
D O I
10.1088/1361-6382/ac1616
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
High-precision space inertial sensors are one of the most important payloads in satellite Earth's gravity measurement and space-based gravitational wave detection due to their extremely high sensitivity. However, seismic noise affects its terrestrial-based performance validation, so that it is very significant to develop low frequency horizontal vibration isolation system to suppress the impact of seismic noise. In this article, a horizontal active vibration isolation bench for terrestrial-based investigation of space accelerometer is developed, on which the motion in three dimensions is monitored by two tri-axis seismometers and actively controlled by three voice coil motors. The principle and potential performance of this bench are theoretically analyzed and estimated in details. The experimental result shows that the bench can achieve high vibration isolation performance in horizontal translation direction. The residual horizontal vibration noise of this bench due to seismic can be suppressed by about 40 dB at 0.35 Hz. Finally, the potential of this design as a vibration pre-isolation stage to investigate the performance of the inertial sensors dedicated to satellite gravity measurement and space gravitational wave detection is discussed.
引用
收藏
页数:14
相关论文
共 32 条
[1]   Seismic isolation enhancements for initial and Advanced LIGO [J].
Abbott, R ;
Adhikari, R ;
Allen, G ;
Baglino, D ;
Campbell, C ;
Coyne, D ;
Daw, E ;
DeBra, D ;
Faludi, J ;
Fritschel, P ;
Ganguli, A ;
Giaime, J ;
Hammond, M ;
Hardham, C ;
Harry, G ;
Hua, W ;
Jones, L ;
Kern, J ;
Lantz, B ;
Lilienkamp, K ;
Mailand, K ;
Mason, K ;
Mittleman, R ;
Nayfeh, S ;
Ottaway, D ;
Phinney, J ;
Rankin, W ;
Robertson, N ;
Scheffler, R ;
Shoemaker, DH ;
Wen, S ;
Zucker, M ;
Zuo, L .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (05) :S915-S921
[2]   Two-dimensional X pendulum vibration isolation table [J].
Barton, MA ;
Uchiyama, T ;
Kuroda, K ;
Kanda, N ;
Ishizuka, H .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (04) :2150-2154
[3]  
Canuto, 2006, 2006 IEEE C EM, P965
[4]   A new torsion pendulum for testing the limits of free-fall for LISA test masses [J].
Cavalleri, A. ;
Ciani, G. ;
Dolesi, R. ;
Heptonstall, A. ;
Hueller, M. ;
Nicolodi, D. ;
Rowan, S. ;
Tombolato, D. ;
Vitale, S. ;
Wass, P. J. ;
Weber, W. J. .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (09)
[5]   LISA: Laser interferometer space antenna for gravitational wave measurements [J].
Danzmann, K .
CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (11A) :A247-A250
[6]  
Drinkwater M.R., 2006, P 3 INT GOCE US WORK, P6
[7]   Precise accelerometry onboard the GRACE gravity field satellite mission [J].
Flury, Jakob ;
Bettadpur, Srinivas ;
Tapley, Byron D. .
ADVANCES IN SPACE RESEARCH, 2008, 42 (08) :1414-1423
[8]   Passive vibration isolation using a Roberts linkage [J].
Garoi, F ;
Winterflood, J ;
Ju, L ;
Jacob, J ;
Blair, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (07) :3487-3491
[9]  
Guralp, 2016, GUR 3ESP COMP OFF WE
[10]   Active low frequency vertical vibration isolation [J].
Hensley, JM ;
Peters, A ;
Chu, S .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (06) :2735-2741