DFT Calculations of 31P NMR Chemical Shifts in Palladium Complexes

被引:14
作者
Kondrashova, Svetlana A. [1 ]
Polyancev, Fedor M. [1 ]
Latypov, Shamil K. [1 ]
机构
[1] RAS, FRC Kazan Sci Ctr, Arbuzov Inst Organ & Phys Chem, Kazan 420088, Russia
关键词
DFT calculations; NMR chemical shifts; palladium complexes; phosphorus; MOLECULAR-ORBITAL METHODS; GAUSSIAN-BASIS SETS; CONSISTENT BASIS-SETS; GROUP-10; METAL-COMPLEXES; ZETA VALENCE QUALITY; AUGMENTED BASIS-SETS; X-RAY CRYSTAL; PLATINUM(II) COMPLEXES; CATIONIC PALLADIUM(II); PHOSPHONATE COMPLEXES;
D O I
10.3390/molecules27092668
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this study, comparative analysis of calculated (GIAO method, DFT level) and experimental P-31 NMR shifts for a wide range of model palladium complexes showed that, on the whole, the theory reproduces the experimental data well. The exceptions are the complexes with the P=O phosphorus, for which there is a systematic underestimation of shielding, the value of which depends on the flexibility of the basis sets, especially at the geometry optimization stage. The use of triple-zeta quality basis sets and additional polarization functions at this stage reduces the underestimation of shielding for such phosphorus atoms. To summarize, in practice, for the rapid assessment of P-31 NMR shifts, with the exception of the P=O type, a simple PBE0/{6-311G(2d,2p); Pd(SDD)}//PBE0/{6-31+G(d); Pd(SDD)} approximation is quite acceptable (RMSE = 8.9 ppm). Optimal, from the point of view of "price-quality" ratio, is the PBE0/{6-311G(2d,2p); Pd(SDD)}//PBE0/{6-311+G(2d); Pd(SDD)} (RMSE = 8.0 ppm) and the PBE0/{def2-TZVP; Pd(SDD)}//PBE0/{6-311+G(2d); Pd(SDD)} (RMSE = 6.9 ppm) approaches. In all cases, a linear scaling procedure is necessary to minimize systematic errors.
引用
收藏
页数:12
相关论文
共 72 条
[1]   Toward reliable density functional methods without adjustable parameters: The PBE0 model [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (13) :6158-6170
[2]   ENERGY-ADJUSTED ABINITIO PSEUDOPOTENTIALS FOR THE 2ND AND 3RD ROW TRANSITION-ELEMENTS [J].
ANDRAE, D ;
HAUSSERMANN, U ;
DOLG, M ;
STOLL, H ;
PREUSS, H .
THEORETICA CHIMICA ACTA, 1990, 77 (02) :123-141
[3]   Double perturbation theory: a powerful tool in computational coordination chemistry [J].
Autschbach, J ;
Ziegler, T .
COORDINATION CHEMISTRY REVIEWS, 2003, 238 :83-126
[4]   Relativistic DFT calculations of the NMR properties and reactivity of transition metal methane σ-complexes: insights on C-H bond activation [J].
Bagno, Alessandro ;
Saielli, Giacomo .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (10) :4285-4291
[5]  
Bühl M, 1999, J COMPUT CHEM, V20, P91, DOI 10.1002/(SICI)1096-987X(19990115)20:1<91::AID-JCC10>3.0.CO
[6]  
2-C
[7]   Cationic palladium(II) complexes as catalysts for the oxidation of terminal olefins to methyl ketones using hydrogen peroxide [J].
Cao, Qun ;
Bailie, David S. ;
Fu, Runzhong ;
Muldoon, Mark J. .
GREEN CHEMISTRY, 2015, 17 (05) :2750-2757
[8]   THE NATURE OF THE COORDINATE LINK .11. SYNTHESIS AND P-31 NUCLEAR MAGNETIC-RESONANCE SPECTROSCOPY OF PLATINUM AND PALLADIUM COMPLEXES CONTAINING SIDE-BONDED (E)-DIPHENYLDIPHOSPHENE - X-RAY CRYSTAL AND MOLECULAR-STRUCTURES OF [PD((E)-PHP=PPH)-(PH2PCH2CH2PPH2)] AND [PD((E)-PHP=PPH][W(CO)5]2)(PH2PCH2CH2-PPH2)]TA [J].
CHATT, J ;
HITCHCOCK, PB ;
PIDCOCK, A ;
WARRENS, CP ;
DIXON, KR .
JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1984, (10) :2237-2244
[9]   EFFICIENT DIFFUSE FUNCTION-AUGMENTED BASIS SETS FOR ANION CALCULATIONS. III. THE 3-21+G BASIS SET FOR FIRST-ROW ELEMENTS, LI-F [J].
CLARK, T ;
CHANDRASEKHAR, J ;
SPITZNAGEL, GW ;
SCHLEYER, PV .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (03) :294-301
[10]   Palladium-catalyzed phosphaketene decarbonylation: Diphosphaureylene intermediates in diphosphene formation [J].
David, MA ;
Wicht, DK ;
Glueck, DS ;
Yap, GPA ;
LiableSands, LM ;
Rheingold, AL .
ORGANOMETALLICS, 1997, 16 (22) :4768-4770