Investigation of polyimide as an anode material for lithium-ion battery and its thermal safety behavior

被引:13
|
作者
He, Jianwei [1 ]
Liao, Yucong [1 ]
Hu, Qian [1 ]
Zeng, Zhaowei [1 ]
Yi, Lei [1 ]
Wang, Yadong [1 ]
Lu, Huijuan [2 ]
Pan, Mu [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Wuhan Text Univ, Sch Chem & Chem Engn, Wuhan 430073, Peoples R China
关键词
Polyimide electrode material; Conjugate polymer; Lithium-ion battery; Thermo safety; Anode material; DIFFERENTIAL SCANNING CALORIMETRY; LI-ION; ELECTRODE MATERIALS; CATHODE MATERIAL; STABILITY; STORAGE; CHALLENGES; GRAPHITE; LI0.81C6; LIXSI;
D O I
10.1007/s11581-020-03509-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As a type of a conjugate polymer with a reversible oxidizing-reducing property, polyimide is considered a representative polymer material for use as electrodes in lithium-ion batteries. Pyromellitic dianhydride is polymerized to form polyimide for use as an anode material in a lithium-ion battery, and its electrochemical and thermal properties are investigated. The first discharge capacity of the as-synthesized polyimide electrode material is 1520 mAh g(-1), the charge capacity is 832 mAh g(-1), and the discharge and charge capacities after 50 cycles are 587 mAh g(-1) and 573 mAh g(-1), respectively. In addition, the thermal behavior of the PI polymer electrode material is investigated by differential scanning calorimetry (DSC) measurements and compared with that of the graphite anode material. Under the same lithium intercalation condition, the heat release of polyimide and graphite are 242 J g(-1) and 658 J g(-1), respectively. Experimental results reveal that polyimide exhibits superior thermal properties than those observed at the graphite electrode at least in the initial cycle in lithium-ion batteries.
引用
收藏
页码:3343 / 3350
页数:8
相关论文
共 50 条
  • [1] Investigation of polyimide as an anode material for lithium-ion battery and its thermal safety behavior
    Jianwei He
    Yucong Liao
    Qian Hu
    Zhaowei Zeng
    Lei Yi
    Yadong Wang
    Huijuan Lu
    Mu Pan
    Ionics, 2020, 26 : 3343 - 3350
  • [2] A Potential Polycarbonyl Polyimide as Anode Material for Lithium-Ion Batteries
    Zhang, Shengnan
    Zhu, Kai
    Gao, Yinyi
    Bao, Tianzeng
    Wu, Hongbin
    Cao, Dianxue
    CHEMISTRY-AN ASIAN JOURNAL, 2023, 18 (16)
  • [3] Lithium antimonite: A new class of anode material for lithium-ion battery
    Kundu, Manab
    Mahanty, Sourindra
    Basu, Rajendra Nath
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (07) : 1389 - 1392
  • [4] Research Progress on Lithium Titanate as Anode Material in Lithium-ion Battery
    Yi, Tan
    Bing, Xue
    JOURNAL OF INORGANIC MATERIALS, 2018, 33 (05) : 475 - 482
  • [5] Investigation on Safety Evaluation of Lithium-Ion Battery
    Xie, Wen-qiang
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND ENVIRONMENTAL ENGINEERING (SEEE 2016), 2016,
  • [6] Improvement of thermal stability and safety of lithium ion battery using SiO anode material
    Liu, Yi-Hung
    Okano, Miki
    Mukai, Takashi
    Inoue, Kenshi
    Yanagida, Masahiro
    Sakai, Tetsuo
    JOURNAL OF POWER SOURCES, 2016, 304 : 9 - 14
  • [7] A Silicon Anode Material with Layered Structure for the Lithium-ion Battery
    Liao, Dongliang
    Kuang, Xuanlin
    Xiang, Jianfeng
    Wang, Xiaohong
    19TH ANNUAL CONFERENCE AND 8TH INTERNATIONAL CONFERENCE OF CHINESE SOCIETY OF MICRO/NANO TECHNOLOGY (CSMNT2017), 2018, 986
  • [8] Investigation of the thermal management potential of phase change material for lithium-ion battery
    Wang, Haocheng
    Guo, Yanhong
    Ren, Yong
    Yeboah, Siegfried
    Wang, Jing
    Long, Fei
    Zhang, Zhiyu
    Jiang, Rui
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [9] Computational investigation of silicene/nickel anode for lithium-ion battery
    Galashev, Alexander Y.
    SOLID STATE IONICS, 2020, 357
  • [10] Electrochemical properties of lithium vanadium oxide as an anode material for lithium-ion battery
    Choi, Nam-Soon
    Kim, Joon-Sup
    Yin, Ri-Zhu
    Kim, Sung-Soo
    MATERIALS CHEMISTRY AND PHYSICS, 2009, 116 (2-3) : 603 - 606