A Large-scale and Extensible Platform for Precision Medicine Research

被引:0
|
作者
Belghait, Fodil [1 ]
April, Alain [1 ]
Hamet, Pavel [2 ]
Tremblay, Johanne [2 ]
Desrosiers, Christian [1 ]
机构
[1] Ecole Technol Super, 1100 Notre Dame West, Montreal, PQ, Canada
[2] Ctr Hosp Univ Montreal, Montreal, PQ, Canada
来源
PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON DIGITAL PUBLIC HEALTH (DPH '19) | 2019年
关键词
Clinical Databases; Genomics; Precision medicine; Bioinformatics; Big Data; ADVANCE; DISEASE;
D O I
10.1145/3357729.3357742
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The massive adoption of high-throughput genomics, deep sequencing technologies and big data technologies have made possible the era of precision medicine. However, the volume of data and its complexity remain important challenges for precision medicine research, hindering development in this field. The literature on precision medicine research describes a few platforms to support specific types of studies, but none of these offer researchers the level of customization required to meet their specific needs [1]. Methods: We propose to design and develop a platform able to import and integrate a very large volume of genetics, clinical, demographical and environmental data in a cloud computing infrastructure. In our previous publication, we presented an approach that can customize existing data models to fit any precision medicine research data requirement [1] and the requirement for future large-scale precision medicine platforms, in terms of data extensibility and the scalability of processing on demand. We also proposed a framework to meet the specific requirement of any precision medicine research [2]. In this paper, we describe how this new framework was implemented and trialed by the precision medicine researchers at the Centre Hospitalier Universitaire de l'Universite de Montreal (CHUM). Results: The data analysis simulations showed that the random forest algorithm presents better accuracy results. We obtained an F1-Score of 72% for random forest, 69% using linear regression and 62% using the neural network algorithm. Conclusion: The results suggest that the proposed precision medicine data analysis platform allows researchers to configure, prepare the analysis environment and customize the platform data model to their specific research in very optimal delays, at very low cost and with minimal technical skills.
引用
收藏
页码:47 / 54
页数:8
相关论文
共 50 条
  • [41] A Multimodal Analytics Platform for Journalists Analyzing Large-Scale, Heterogeneous Multilingual, and Multimedia Content
    Vrochidis, Stefanos
    Moumtzidou, Anastasia
    Gialampoukidis, Ilias
    Liparas, Dimitris
    Casamayor, Gerard
    Wanner, Leo
    Heise, Nicolaus
    Wagner, Tilman
    Bilous, Andriy
    Jamin, Emmanuel
    Simeonov, Boyan
    Alexiev, Vladimir
    Busch, Reinhard
    Arapakis, Ioannis
    Kompatsiaris, Ioannis
    FRONTIERS IN ROBOTICS AND AI, 2018, 5
  • [42] Pancreatic Cancer Organoids: An Emerging Platform for Precision Medicine?
    Sereti, Evangelia
    Papapostolou, Irida
    Dimas, Konstantinos
    BIOMEDICINES, 2023, 11 (03)
  • [43] On the Design of a Blockchain Platform for Clinical Trial and Precision Medicine
    Shae, Zonyin
    Tsai, Jeffrey K. Q.
    2017 IEEE 37TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2017), 2017, : 1972 - 1980
  • [44] Challenges in IBD Research: Precision Medicine
    Denson, Lee A.
    Curran, Mark
    McGovern, Dermot P. B.
    Koltun, Walter A.
    Duerr, Richard H.
    Kim, Sandra C.
    Sartor, R. Balfour
    Sylvester, Francisco A.
    Abraham, Clara
    de Zoeten, Edwin F.
    Siegel, Corey A.
    Burns, Richeal M.
    Dobes, Angela M.
    Shtraizent, Nataly
    Honig, Gerard
    Heller, Caren A.
    Hurtado-Lorenzo, Andres
    Cho, Judy H.
    INFLAMMATORY BOWEL DISEASES, 2019, 25 : S31 - S39
  • [45] Research Priorities for Precision Medicine in NAFLD
    Iruzubieta, Paula
    Bataller, Ramon
    Arias-Loste, Maria Teresa
    Arrese, Marco
    Calleja, Jose Luis
    Castro-Narro, Graciela
    Cusi, Kenneth
    Dillon, John F.
    Martinez-Chantar, Maria Luz
    Mateo, Miguel
    Perez, Antonio
    Rinella, Mary E.
    Romero-Gomez, Manuel
    Schattenberg, Joern M.
    Zelber-Sagi, Shira
    Crespo, Javier
    Lazarus, Jeffrey, V
    CLINICS IN LIVER DISEASE, 2023, 27 (02) : 535 - 551
  • [46] A Comprehensive Infrastructure for Big Data in Cancer Research: Accelerating Cancer Research and Precision Medicine (vol 5, 83, 2017)
    Hinkson, Izumi V.
    Davidsen, Tanja M.
    Klemm, Juli D.
    Chandramouliswaran, Ishwar
    Kerlavage, Anthony R.
    Kibbe, Warren A.
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2017, 5
  • [47] Use of large-scale veterinary data for the investigation of antimicrobial prescribing practices in equine medicine
    Welsh, C. E.
    Parkin, T. D. H.
    Marshall, J. F.
    EQUINE VETERINARY JOURNAL, 2017, 49 (04) : 425 - 432
  • [48] The Impact of Communicating Uncertainty on Public Responses to Precision Medicine Research
    Ratcliff, Chelsea L.
    Wong, Bob
    Jensen, Jakob D.
    Kaphingst, Kimberly A.
    ANNALS OF BEHAVIORAL MEDICINE, 2021, 55 (11) : 1048 - 1061
  • [49] Comparison of Annotation Services for Next-Generation Sequencing in a Large-Scale Precision Oncology Program
    Katsoulakis, Evangelia
    Duffy, Jill E.
    Hintze, Bradley
    Spector, Neil L.
    Kelley, Michael J.
    JCO PRECISION ONCOLOGY, 2020, 4 : 212 - 221
  • [50] PREFACE: PRECISION MEDICINE APP ROACHES TO HEALTH DISPARITIES RESEARCH
    Griffith, Derek M.
    ETHNICITY & DISEASE, 2020, 30 : 129 - 134