Entropic barriers as a reason for hardness in both classical and quantum algorithms

被引:16
作者
Bellitti, Matteo [1 ]
Ricci-Tersenghi, Federico [2 ,3 ,4 ]
Scardicchio, Antonello [5 ,6 ]
机构
[1] Boston Univ, Dept Phys, Boston, MA 02215 USA
[2] Sapienza Univ Roma, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy
[3] CNR, Nanotec, Rome Unit, Ple A Moro 2, I-00185 Rome, Italy
[4] Ist Nazl Fis Nucl, Sez Roma 1, Ple A Moro 2, I-00185 Rome, Italy
[5] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[6] Ist Nazl Fis Nucl, Sez Trieste, Via Valerio 2, I-34127 Trieste, Italy
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 04期
基金
欧洲研究理事会;
关键词
SPIN MODELS; FERROMAGNET; TRANSITION; DYNAMICS; PHASE;
D O I
10.1103/PhysRevResearch.3.043015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study both classical and quantum algorithms to solve a hard optimization problem, namely 3-XORSAT on 3-regular random graphs. By introducing a new quasi-greedy algorithm that is not allowed to jump over large energy barriers, we show that the problem hardness is mainly due to entropic barriers. We study, both analytically and numerically, several optimization algorithms, finding that entropic barriers affect in a similar way classical local algorithms and quantum annealing. For the adiabatic algorithm, the difficulty we identify is distinct from that of tunneling under large barriers, but does, nonetheless, give rise to exponential running (annealing) times.
引用
收藏
页数:15
相关论文
共 72 条
[41]   Quantum Adiabatic Algorithm and Scaling of Gaps at First-Order Quantum Phase Transitions [J].
Laumann, C. R. ;
Moessner, R. ;
Scardicchio, A. ;
Sondhi, S. L. .
PHYSICAL REVIEW LETTERS, 2012, 109 (03)
[42]   Thresholds of descending algorithms in inference problems [J].
Mannelli, Stefano Sarao ;
Zdeborova, Lenka .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (03)
[43]   Marvels and Pitfalls of the Langevin Algorithm in Noisy High-Dimensional Inference [J].
Mannelli, Stefano Sarao ;
Biroli, Giulio ;
Cammarota, Chiara ;
Krzakala, Florent ;
Urbani, Pierfrancesco ;
Zdeborova, Lenka .
PHYSICAL REVIEW X, 2020, 10 (01)
[44]   Threshold values of random K-SAT from the cavity method [J].
Mertens, S ;
Mézard, M ;
Zecchina, R .
RANDOM STRUCTURES & ALGORITHMS, 2006, 28 (03) :340-373
[45]  
Messiah A., 1962, QUANTUM MECH, VII
[46]   Clustering of solutions in the random satisfiability problem -: art. no. 197205 [J].
Mézard, M ;
Mora, T ;
Zecchina, R .
PHYSICAL REVIEW LETTERS, 2005, 94 (19)
[47]   Two solutions to diluted p-spin models and XORSAT problems [J].
Mézard, M ;
Ricci-Tersenghi, F ;
Zecchina, R .
JOURNAL OF STATISTICAL PHYSICS, 2003, 111 (3-4) :505-533
[48]   Analytic and algorithmic solution of random satisfiability problems [J].
Mézard, M ;
Parisi, G ;
Zecchina, R .
SCIENCE, 2002, 297 (5582) :812-815
[49]   Cooling-schedule dependence of the dynamics of mean-field glasses [J].
Montanari, A ;
Ricci-Tersenghi, F .
PHYSICAL REVIEW B, 2004, 70 (13) :134406-1
[50]   Instability of one-step replica-symmetry-broken phase in satisfiability problems [J].
Montanari, A ;
Parisi, G ;
Ricci-Tersenghi, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (06) :2073-2091