Entropic barriers as a reason for hardness in both classical and quantum algorithms

被引:16
作者
Bellitti, Matteo [1 ]
Ricci-Tersenghi, Federico [2 ,3 ,4 ]
Scardicchio, Antonello [5 ,6 ]
机构
[1] Boston Univ, Dept Phys, Boston, MA 02215 USA
[2] Sapienza Univ Roma, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy
[3] CNR, Nanotec, Rome Unit, Ple A Moro 2, I-00185 Rome, Italy
[4] Ist Nazl Fis Nucl, Sez Roma 1, Ple A Moro 2, I-00185 Rome, Italy
[5] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[6] Ist Nazl Fis Nucl, Sez Trieste, Via Valerio 2, I-34127 Trieste, Italy
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 04期
基金
欧洲研究理事会;
关键词
SPIN MODELS; FERROMAGNET; TRANSITION; DYNAMICS; PHASE;
D O I
10.1103/PhysRevResearch.3.043015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study both classical and quantum algorithms to solve a hard optimization problem, namely 3-XORSAT on 3-regular random graphs. By introducing a new quasi-greedy algorithm that is not allowed to jump over large energy barriers, we show that the problem hardness is mainly due to entropic barriers. We study, both analytically and numerically, several optimization algorithms, finding that entropic barriers affect in a similar way classical local algorithms and quantum annealing. For the adiabatic algorithm, the difficulty we identify is distinct from that of tunneling under large barriers, but does, nonetheless, give rise to exponential running (annealing) times.
引用
收藏
页数:15
相关论文
共 72 条
[11]   Solving satisfiability problems by fluctuations: The dynamics of stochastic local search algorithms [J].
Barthel, W ;
Hartmann, AK ;
Weigt, M .
PHYSICAL REVIEW E, 2003, 67 (06) :15
[12]   Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states [J].
Basko, DM ;
Aleiner, IL ;
Altshuler, BL .
ANNALS OF PHYSICS, 2006, 321 (05) :1126-1205
[13]   How we are leading a 3-XORSAT challenge: From the energy landscape to the algorithm and its efficient implementation on GPUs [J].
Bernaschi, M. ;
Bisson, M. ;
Fatica, M. ;
Marinari, E. ;
Martin-Mayor, V ;
Parisi, G. ;
Ricci-Tersenghi, F. .
EPL, 2021, 133 (06)
[14]   Complexity transitions in global algorithms for sparse linear systems over finite fields [J].
Braunstein, A ;
Leone, M ;
Ricci-Tersenghi, F ;
Zecchina, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (35) :7559-7574
[15]   SUBOPTIMALITY OF LOCAL ALGORITHMS FOR A CLASS OF MAX-CUT PROBLEMS [J].
Chen, Wei-Kuo ;
Gamarnik, David ;
Panchenko, Dmitry ;
Rahman, Mustazee .
ANNALS OF PROBABILITY, 2019, 47 (03) :1587-1618
[16]   Rigorous decimation-based construction of ground pure states for spin-glass models on random lattices [J].
Cocco, S ;
Dubois, O ;
Mandler, J ;
Monasson, R .
PHYSICAL REVIEW LETTERS, 2003, 90 (04) :4-472054
[17]  
Cocco S., ARXIVCS0302003
[18]  
Dormand J. R., 1980, J COMPUT APPL MATH, V6, P19, DOI DOI 10.1016/0771-050X(80)90013-3
[19]  
Dubois O, 2002, CR MATH, V335, P963, DOI 10.1016/S1631-073X(02)02563-3
[20]  
Farhi E., ARXIV14114028