Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Parietal Cortex and Comparison with Human and Macaque Resting-State Functional Connectivity

被引:370
作者
Mars, Rogier B. [1 ,3 ]
Jbabdi, Saad [3 ]
Sallet, Jerome [1 ]
O'Reilly, Jill X. [3 ,4 ]
Croxson, Paula L. [1 ,4 ]
Olivier, Etienne [1 ,5 ]
Noonan, MaryAnn P. [1 ]
Bergmann, Caroline [2 ]
Mitchell, Anna S. [1 ]
Baxter, Mark G. [4 ]
Behrens, Timothy E. J. [3 ]
Johansen-Berg, Heidi [3 ]
Tomassini, Valentina [3 ]
Miller, Karla L. [3 ]
Rushworth, Matthew F. S. [1 ,3 ]
机构
[1] Univ Oxford, Dept Expt Psychol, Oxford OX1 3UD, England
[2] Univ Oxford, Dept Vet Serv, Oxford OX1 3UD, England
[3] Univ Oxford, Ctr Funct Magnet Resonance Imaging Brain, Oxford OX1 3UD, England
[4] Mt Sinai Sch Med, Glickenhaus Lab Neuropsychol, Dept Neurosci, New York, NY 10029 USA
[5] Catholic Univ Louvain, Inst Neurosci, B-1200 Brussels, Belgium
基金
英国惠康基金; 英国医学研究理事会; 英国经济与社会研究理事会;
关键词
ANTERIOR INTRAPARIETAL CORTEX; POSTERIOR PARIETAL; PREFRONTAL CORTEX; TOPOGRAPHIC ORGANIZATION; IMPLIES EQUIVALENCIES; CORTICAL CONNECTIONS; SPATIAL ATTENTION; RHESUS-MONKEY; AREAS; PREMOTOR;
D O I
10.1523/JNEUROSCI.5102-10.2011
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Despite the prominence of parietal activity in human neuroimaging investigations of sensorimotor and cognitive processes, there remains uncertainty about basic aspects of parietal cortical anatomical organization. Descriptions of human parietal cortex draw heavily on anatomical schemes developed in other primate species, but the validity of such comparisons has been questioned by claims that there are fundamental differences between the parietal cortex in humans and other primates. A scheme is presented for parcellation of human lateral parietal cortex into component regions on the basis of anatomical connectivity and the functional interactions of the resulting clusters with other brain regions. Anatomical connectivity was estimated using diffusion-weighted magnetic resonance image (MRI)-based tractography, and functional interactions were assessed by correlations in activity measured with functional MRI at rest. Resting-state functional connectivity was also assessed directly in the rhesus macaque lateral parietal cortex in an additional experiment, and the patterns found reflected known neuroanatomical connections. Cross-correlation in the tractography-based connectivity patterns of parietal voxels reliably parcellated human lateral parietal cortex into 10 component clusters. The resting-state functional connectivity of human superior parietal and intraparietal clusters with frontal and extrastriate cortex suggested correspondences with areas in macaque superior and intraparietal sulcus. Functional connectivity patterns with parahippocampal cortex and premotor cortex again suggested fundamental correspondences between inferior parietal cortex in humans and macaques. In contrast, the human parietal cortex differs in the strength of its interactions between the central inferior parietal lobule region and the anterior prefrontal cortex.
引用
收藏
页码:4087 / 4100
页数:14
相关论文
共 106 条
[21]   Voluntary orienting is dissociated from target detection in human posterior parietal cortex [J].
Corbetta, M ;
Kincade, JM ;
Ollinger, JM ;
McAvoy, MP ;
Shulman, GL .
NATURE NEUROSCIENCE, 2000, 3 (03) :292-297
[22]   Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography [J].
Croxson, PL ;
Johansen-Berg, H ;
Behrens, TEJ ;
Robson, MD ;
Pinsk, MA ;
Gross, CG ;
Richter, W ;
Richter, MC ;
Kastner, S ;
Rushworth, MFS .
JOURNAL OF NEUROSCIENCE, 2005, 25 (39) :8854-8866
[23]   Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas [J].
Culham, JC ;
Danckert, SL ;
DeSouza, JFX ;
Gati, JS ;
Menon, RS ;
Goodale, MA .
EXPERIMENTAL BRAIN RESEARCH, 2003, 153 (02) :180-189
[24]   Cortical substrates for exploratory decisions in humans [J].
Daw, Nathaniel D. ;
O'Doherty, John P. ;
Dayan, Peter ;
Seymour, Ben ;
Dolan, Raymond J. .
NATURE, 2006, 441 (7095) :876-879
[25]   Visual activation in prefrontal cortex is stronger in monkeys than in humans [J].
Denys, K ;
Vanduffel, W ;
Fize, D ;
Nelissen, K ;
Sawamura, H ;
Georgieva, S ;
Vogels, R ;
Van Essen, D ;
Orban, GA .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2004, 16 (09) :1505-1516
[26]   The processing of visual shape in the cerebral cortex of human and nonhuman primates: A functional magnetic resonance imaging study [J].
Denys, K ;
Vanduffel, W ;
Fize, D ;
Nelissen, K ;
Peuskens, H ;
Van Essen, D ;
Orban, GA .
JOURNAL OF NEUROSCIENCE, 2004, 24 (10) :2551-2565
[27]   Neural correlates of reach errors [J].
Diedrichsen, J ;
Hashambhoy, Y ;
Rane, T ;
Shadmehr, R .
JOURNAL OF NEUROSCIENCE, 2005, 25 (43) :9919-9931
[28]   RESPONSE PROPERTIES AND RECEPTIVE FIELDS OF CELLS IN AN ANATOMICALLY DEFINED REGION OF SUPERIOR TEMPORAL SULCUS IN MONKEY [J].
DUBNER, R ;
ZEKI, SM .
BRAIN RESEARCH, 1971, 35 (02) :528-&
[29]   A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning [J].
Dumoulin, SO ;
Bittar, RG ;
Kabani, NJ ;
Baker, CL ;
Le Goualher, G ;
Pike, GB ;
Evans, AC .
CEREBRAL CORTEX, 2000, 10 (05) :454-463
[30]   Anterior regions of monkey parietal cortex process visual 3D shape [J].
Durand, Jean-Baptiste ;
Nelissen, Koen ;
Joly, Olivier ;
Wardak, Claire ;
Todd, James T. ;
Norman, J. Farley ;
Janssen, Peter ;
Vanduffel, Wim ;
Orban, Guy A. .
NEURON, 2007, 55 (03) :493-505