ON THE SIZE OF p-ADIC WHITTAKER FUNCTIONS

被引:7
作者
Assing, Edgar [1 ]
机构
[1] Univ Bristol, Sch Math, Bristol, Avon, England
关键词
Automorphic representations; Whittaker new vectors; p-adic stationary phase; p-adic special functions; EXPONENTIAL-SUMS; LARGE VALUES; NEWFORMS;
D O I
10.1090/tran/7685
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we tackle a question raised by N. Templier and A. Saha concerning the size of Whittaker new vectors appearing in infinite-dimensional representations of GL(2) over nonarchimedean fields. We derive precise bounds for such functions in all possible situations. Our main tool is the p-adic method of stationary phase.
引用
收藏
页码:5287 / 5340
页数:54
相关论文
共 18 条
[1]  
[Anonymous], [No title captured]
[2]  
Blomer V, 2015, ANN SCI ECOLE NORM S, V48, P561
[3]   Exponential sums with rational function entries [J].
Cochrane, T ;
Zheng, ZY .
ACTA ARITHMETICA, 2000, 95 (01) :67-95
[4]  
Cochrane T, 2002, NUMBER THEORY FOR THE MILLENNIUM I, P273
[5]   BESSEL FUNCTIONS FOR GL2 [J].
Cogdell, James W. .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2014, 45 (05) :557-582
[6]  
Corbett A., MATH RES LETT
[7]  
Dabrowski R, 1997, ACTA ARITH, V80, P1
[8]  
GELBART S, 1977, AUTOMORPHIC FORMS RE, V33, P213
[9]  
Iwaniec Henryk, 2004, Analytic number theory, V53, DOI DOI 10.1090/COLL/053
[10]  
Jacquet H., 1970, Lecture Notes in Mathematics