Subclasses of meromorphically multivalent functions defined by a differential operator

被引:2
作者
Orhan, Halit [1 ]
Raducanu, Dorina [2 ]
Deniz, Erhan [1 ]
机构
[1] Ataturk Univ, Fac Sci, Dept Math, TR-25240 Erzurum, Turkey
[2] Transilvania Univ Brasov, Fac Math & Comp Sci, Iuliu Maniu 50091 50, Brasov, Romania
关键词
Analytic functions; Meromorphic functions; Multivalent functions; Differential operator; Subordination; Neighborhoods; GENERALIZED HYPERGEOMETRIC FUNCTION; NEGATIVE COEFFICIENTS; UNIVALENT-FUNCTIONS; NEIGHBORHOODS; FAMILIES;
D O I
10.1016/j.camwa.2010.12.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce and study two new subclasses Sigma(lambda mu mp)(alpha, beta) and Sigma(+)(lambda mu mp)(alpha, beta) of meromorphically multivalent functions which are defined by means of a new differential operator. Some results connected to subordination properties, coefficient estimates, convolution properties, integral representation and distortion theorems are obtained. We also extend the familiar concept of (n, delta)-neighborhoods of analytic functions to these subclasses of meromorphically multivalent functions. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:966 / 979
页数:14
相关论文
共 20 条
[1]   Neighborhoods of a certain family of multivalent functions with negative coefficients [J].
Altintas, O ;
Özkan, Ö ;
Srivastava, HM .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (10-11) :1667-1672
[2]   Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric function [J].
Aouf, M. K. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (03) :494-509
[3]  
Aouf M. K., 1993, TSUKUBA J MATH, V17, P481, DOI DOI 10.21099/tkbjm/1496162274
[4]  
Clunie J., 1960, J LOND MATH SOC, V35, P229
[5]   SOME PROPERTIES OF CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS BY USING GENERALIZED RUSCHEWEYH DERIVATIVE OPERATOR [J].
Deniz, Erhan ;
Orhan, Halit .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (03) :699-713
[6]  
Dinggong Y., 1996, B I MATH ACAD SINICA, V24, P151
[7]  
Goluzin G.M., 1935, DOKL AKAD NAUK SSSR, V42, P647
[8]  
Goodman A.W., 1957, P AM MATH SOC, P598
[9]  
Liu J.-L., 2000, MATH JPN, V52, P425
[10]  
Liu JL, 2004, MATH COMPUT MODEL, V39, P21, DOI [10.1016/S0895-7177(04)90503-1, 10.1016/S0895-7177(03)00391-1]