Chaotic properties of systems with Markov dynamics

被引:89
作者
Lecomte, V
Appert-Rolland, C
van Wijland, F
机构
[1] Univ Paris 11, Phys Theor Lab, CNRS, UMR8627, F-91405 Orsay, France
[2] Ecole Normale Super, Lab Phys Stat, CNRS, UMR8550, F-75005 Paris, France
[3] Univ Paris 07, Lab Mat & Syst Complexes, CNRS, UMR 7057, F-75251 Paris, France
关键词
D O I
10.1103/PhysRevLett.95.010601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a general approach for computing the dynamic partition function of a continuous-time Markov process. The Ruelle topological pressure is identified with the large deviation function of a physical observable. We construct for the first time a corresponding finite Kolmogorov-Sinai entropy for these processes. Then, as an example, the latter is computed for a symmetric exclusion process. We further present the first exact calculation of the topological pressure for an N-body stochastic interacting system, namely, an infinite-range Ising model endowed with spin-flip dynamics. Expressions for the Kolmogorov-Sinai and the topological entropies follow.
引用
收藏
页数:4
相关论文
共 26 条
[1]   Thermodynamic formalism in the thermodynamic limit: Diffusive systems with static disorder [J].
Appert, C ;
vanBeijeren, H ;
Ernst, MH ;
Dorfman, JR .
PHYSICAL REVIEW E, 1996, 54 (02) :R1013-R1016
[2]  
BECK C, 1993, CAMBRIDGE NONLINEAR, V4
[3]   Current fluctuations in stochastic lattice gases [J].
Bertini, L ;
De Sole, A ;
Gabrielli, D ;
Jona-Lasinio, G ;
Landim, C .
PHYSICAL REVIEW LETTERS, 2005, 94 (03)
[4]   Current fluctuations in nonequilibrium diffusive systems: An additivity principle [J].
Bodineau, T ;
Derrida, B .
PHYSICAL REVIEW LETTERS, 2004, 92 (18) :180601-1
[5]   Comment on "Universal relation between the Kolmogorov-Sinai entropy and the thermodynamical entropy in simple liquids" [J].
Cohen, EGD ;
Rondoni, L .
PHYSICAL REVIEW LETTERS, 2000, 84 (02) :394-394
[6]   Exact large deviation function in the asymmetric exclusion process [J].
Derrida, B ;
Lebowitz, JL .
PHYSICAL REVIEW LETTERS, 1998, 80 (02) :209-213
[7]   EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION [J].
DERRIDA, B ;
EVANS, MR ;
HAKIM, V ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1493-1517
[8]  
Dorfman J. R., 1999, INTRO CHAOS NONEQUIL
[9]   DYNAMICAL CHAOS IN THE LORENTZ LATTICE-GAS [J].
DORFMAN, JR ;
ERNST, MH ;
JACOBS, D .
JOURNAL OF STATISTICAL PHYSICS, 1995, 81 (1-2) :497-513
[10]   Universal relation between the Kolmogorov-Sinai entropy and the thermodynamical entropy in simple liquids [J].
Dzugutov, M ;
Aurell, E ;
Vulpiani, A .
PHYSICAL REVIEW LETTERS, 1998, 81 (09) :1762-1765