Probing Many-Body Systems near Spectral Degeneracies

被引:3
作者
Ziegler, Klaus [1 ]
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 10期
关键词
dynamics of closed quantum systems; random probing; separation of time scales; Hilbert-space localization; STATISTICAL-THEORY; ENERGY-LEVELS; MATRICES; DYNAMICS;
D O I
10.3390/sym13101796
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The diagonal elements of the time correlation matrix are used to probe closed quantum systems that are measured at random times. This enables us to extract two distinct parts of the quantum evolution, a recurrent part and an exponentially decaying part. This separation is strongly affected when spectral degeneracies occur, for instance, in the presence of spontaneous symmetry breaking. Moreover, the slowest decay rate is determined by the smallest energy level spacing, and this decay rate diverges at the spectral degeneracies. Probing the quantum evolution with the diagonal elements of the time correlation matrix is discussed as a general concept and tested in the case of a bosonic Josephson junction. It reveals for the latter characteristic properties at the transition to Hilbert-space localization.
引用
收藏
页数:10
相关论文
共 27 条
  • [1] ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES
    ANDERSON, PW
    [J]. PHYSICAL REVIEW, 1958, 109 (05): : 1492 - 1505
  • [2] [Anonymous], 2004, RANDOM MATRICES
  • [3] Dynamic control and probing of many-body decoherence in double-well Bose-Einstein condensates
    Bar-Gill, Nir
    Kurizki, Gershon
    Oberthaler, Markus
    Davidson, Nir
    [J]. PHYSICAL REVIEW A, 2009, 80 (05):
  • [4] Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits
    Barends, R.
    Kelly, J.
    Megrant, A.
    Sank, D.
    Jeffrey, E.
    Chen, Y.
    Yin, Y.
    Chiaro, B.
    Mutus, J.
    Neill, C.
    O'Malley, P.
    Roushan, P.
    Wenner, J.
    White, T. C.
    Cleland, A. N.
    Martinis, John M.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (08)
  • [5] Random-matrix theory of quantum transport
    Beenakker, CWJ
    [J]. REVIEWS OF MODERN PHYSICS, 1997, 69 (03) : 731 - 808
  • [6] Solution of a Minimal Model for Many-Body Quantum Chaos
    Chan, Amos
    De Luca, Andrea
    Chalker, J. T.
    [J]. PHYSICAL REVIEW X, 2018, 8 (04):
  • [7] Hilbert-space localization in closed quantum systems
    Cohen, Doron
    Yukalov, Vyacheslav I.
    Ziegler, Klaus
    [J]. PHYSICAL REVIEW A, 2016, 93 (04)
  • [8] Black holes and random matrices
    Cotler, Jordan S.
    Gur-Ari, Guy
    Hanada, Masanori
    Polchinski, Joseph
    Saad, Phil
    Shenker, Stephen H.
    Stanford, Douglas
    Streicher, Alexandre
    Tezuka, Masaki
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (05):
  • [9] STATISTICAL THEORY OF ENERGY LEVELS OF COMPLEX SYSTEMS .3.
    DYSON, FJ
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (01) : 166 - &
  • [10] DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773