Connecting structure to infrared spectra of molecular and autodissociated HCl - Water aggregates

被引:57
作者
Masia, Marco [1 ]
Forbert, Harald [1 ]
Marx, Dominik [1 ]
机构
[1] Ruhr Univ Bochum, Lehrstuhl Theoret Chem, D-44780 Bochum, Germany
关键词
D O I
10.1021/jp0740494
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The properties of perdeuterated HCl(H2O)(n) aggregates with n = 1, 2,..., 6 water molecules are studied by means of ab initio molecular dynamics simulations. The specific focus is on the phenomenon of autodissociation of the acid HCl as a, function of the microsolvation environment size. The calculations provide a basis for characterization in terms of autodissociation energetics as well as in terms of the impact of thermal fluctuations on structure including proton fluxionality and in terms of anharmonic infrared vibrational spectra. Structure stabilization is dominated by strong hydrogen bonds resulting in distinct topologies, which, in turn, heavily influence acid dissociation. The latter is favored for the first time when n = 4. In that case, three hydrogen bonds can be donated toward the chlorine while at the same time a hydronium core is perfectly solvated according to the eigencomplex motif. Hydrogen-bonding interactions between DCl and its solvating molecules affect the dynamical behavior of the D-Cl bond significantly. This can be seen by the onset of fluxionality and an emerging tendency toward proton transfer for the larger clusters. Connecting IR spectra to structural information is possible by exploiting the following observations. Zwitterionic species show characteristic differences in the hydronium region, whereas the D-Cl stretching regime is useful to distinguish neutral aggregates. Furthermore, in the case of fluxional protons large-amplitude motion leads to characteristic band shifts and significant band broadening effects.
引用
收藏
页码:12181 / 12191
页数:11
相关论文
共 73 条
[1]   SPECTRUM AND STRUCTURE OF WATER-RICH WATER HYDRACID COMPLEXES FROM MATRIX-ISOLATION SPECTROSCOPY - EVIDENCE FOR PROTON-TRANSFER [J].
AMIRAND, C ;
MAILLARD, D .
JOURNAL OF MOLECULAR STRUCTURE, 1988, 176 :181-201
[2]   Understanding the infrared spectrum of bare CH5+ [J].
Asvany, O ;
Kumar, P ;
Redlich, B ;
Hegemann, I ;
Schlemmer, S ;
Marx, D .
SCIENCE, 2005, 309 (5738) :1219-1222
[3]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[4]   THERMODYNAMICS AND QUANTUM CORRECTIONS FROM MOLECULAR-DYNAMICS FOR LIQUID WATER [J].
BERENS, PH ;
MACKAY, DHJ ;
WHITE, GM ;
WILSON, KR .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (05) :2375-2389
[5]   MOLECULAR-DYNAMICS AND SPECTRA .1. DIATOMIC ROTATION AND VIBRATION [J].
BERENS, PH ;
WILSON, KR .
JOURNAL OF CHEMICAL PHYSICS, 1981, 74 (09) :4872-4882
[6]   MOLECULAR-DYNAMICS AND SPECTRA .2. DIATOMIC RAMAN [J].
BERENS, PH ;
WHITE, SR ;
WILSON, KR .
JOURNAL OF CHEMICAL PHYSICS, 1981, 75 (02) :515-529
[7]   General and efficient algorithms for obtaining maximally localized Wannier functions [J].
Berghold, G ;
Mundy, CJ ;
Romero, AH ;
Hutter, J ;
Parrinello, M .
PHYSICAL REVIEW B, 2000, 61 (15) :10040-10048
[8]   Heterogeneous reactions important in atmospheric ozone depletion: A theoretical perspective [J].
Bianco, R ;
Hynes, JT .
ACCOUNTS OF CHEMICAL RESEARCH, 2006, 39 (02) :159-165
[9]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[10]   VAN DER WAALS VOLUMES + RADII [J].
BONDI, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1964, 68 (03) :441-+