Guided Locally Linear Embedding

被引:12
|
作者
Alipanahi, Babak [2 ]
Ghodsi, Ali [1 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, David R Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
关键词
Supervised dimensionality reduction; Locally Linear Embedding; Classification; Pattern recognition; SLICED INVERSE REGRESSION; DIMENSION REDUCTION; VISUALIZATION;
D O I
10.1016/j.patrec.2011.02.002
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nonlinear dimensionality reduction is the problem of retrieving a low-dimensional representation of a manifold that is embedded in a high-dimensional observation space. Locally Linear Embedding (LLE), a prominent dimensionality reduction technique is an unsupervised algorithm; as such, it is not possible to guide it toward modes of variability that may be of particular interest. This paper proposes a supervised variation of LLE. Similar to LLE, it retrieves a low-dimensional global coordinate system that faithfully represents the embedded manifold. Unlike LLE, however, it produces an embedding in which predefined modes of variation are preserved. This can improve several supervised learning tasks including pattern recognition, regression, and data visualization. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1029 / 1035
页数:7
相关论文
共 50 条
  • [1] Robust data representation using locally linear embedding guided PCA
    Jiang, Bo
    Ding, Chris
    Luo, Bin
    NEUROCOMPUTING, 2018, 275 : 523 - 532
  • [2] Locally Linear Embedding by Linear Programming
    Xu, Zhijie
    Zhang, Jianqin
    Xu, Zhidan
    Chen, Zhigang
    CEIS 2011, 2011, 15
  • [3] Scaling Locally Linear Embedding
    Fujiwara, Yasuhiro
    Marumo, Naoki
    Blondel, Mathieu
    Takeuchi, Koh
    Kim, Hideaki
    Iwata, Tomoharu
    Ueda, Naonori
    SIGMOD'17: PROCEEDINGS OF THE 2017 ACM INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2017, : 1479 - 1492
  • [4] Incremental locally linear embedding
    Kouropteva, O
    Okun, O
    Pietikäinen, M
    PATTERN RECOGNITION, 2005, 38 (10) : 1764 - 1767
  • [5] Robust locally linear embedding
    Chang, H
    Yeung, DY
    PATTERN RECOGNITION, 2006, 39 (06) : 1053 - 1065
  • [6] Supervised locally linear embedding
    de Ridder, D
    Kouropteva, O
    Okun, O
    Pietikäinen, M
    Duin, RPW
    ARTIFICAIL NEURAL NETWORKS AND NEURAL INFORMATION PROCESSING - ICAN/ICONIP 2003, 2003, 2714 : 333 - 341
  • [7] LOCALLY LINEAR EMBEDDING: A REVIEW
    Chen, Jing
    Ma, Zhengming
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2011, 25 (07) : 985 - 1008
  • [8] Sparse Locally Linear Embedding
    Ziegelmeier, Lori
    Kirby, Michael
    Peterson, Chris
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017), 2017, 108 : 635 - 644
  • [9] Locally linear embedding: a survey
    Chen, Jing
    Liu, Yang
    ARTIFICIAL INTELLIGENCE REVIEW, 2011, 36 (01) : 29 - 48
  • [10] Locally linear embedding: a survey
    Jing Chen
    Yang Liu
    Artificial Intelligence Review, 2011, 36 : 29 - 48