Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance

被引:66
|
作者
Liu, Wen-Bo
Li, Chen-Long
Xie, Yuan-Mei
Weng, Chen-Xun
Gu, Jie
Cao, Xiao-Yu
Lu, Yu-Shuo
Li, Bing-Hong
Yin, Hua-Lei [1 ]
Chen, Zeng-Bing
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Sch Phys, Nanjing 210093, Peoples R China
来源
PRX QUANTUM | 2021年 / 2卷 / 04期
基金
中国国家自然科学基金;
关键词
SECURITY;
D O I
10.1103/PRXQuantum.2.040334
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Discrete-modulated continuous-variable quantum key distribution with homodyne detection is widely recognized for its ease of implementation, efficiency with respect to error correction, and its compatibility with modern optical communication devices. However, recent studies report that the application of homodyne detection obtains poor tolerance to excess noise and insufficient transmission distance, hence seriously restricting the large-scale deployment of quantum secure communication networks. In this paper, we propose a homodyne detection protocol using the quadrature phase shift keying technique. By limiting information leakage, our proposed protocol enhances excess noise tolerance to a high level. Furthermore, we demonstrate that homodyne detection performs better than heterodyne detection in quaternary-modulated continuous-variable quantum key distribution under the untrusted detector noise scenario. The security is analyzed using the tight numerical method against collective attacks in the asymptotic regime. Our results imply that the current protocol can distribute keys in nearly intercity area and, thus, paves the way for constructing low-cost quantum secure communication networks.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Discrete-modulation continuous-variable quantum key distribution with a high key rate
    Wang, Pu
    Zhang, Yu
    Lu, Zhenguo
    Wang, Xuyang
    Li, Yongmin
    NEW JOURNAL OF PHYSICS, 2023, 25 (02):
  • [12] Tracking reference phase with a Kalman filter in continuous-variable quantum key distribution
    Huang, Biao
    Huang, Yongmei
    Peng, Zhenming
    OPTICS EXPRESS, 2020, 28 (19) : 28727 - 28739
  • [13] Key-sifting algorithms for continuous-variable quantum key distribution
    Jin, Di
    Guo, Ying
    Wang, Yijun
    Li, Yin
    Huang, Duan
    PHYSICAL REVIEW A, 2021, 104 (01)
  • [14] Discrete-variable quantum key distribution with homodyne detection
    Primaatmaja, Ignatius W.
    Liang, Cassey C.
    Zhang, Gong
    Haw, Jing Yan
    Wang, Chao
    Lim, Charles C. -W.
    QUANTUM, 2022, 6
  • [15] The Rationale for the Optimal Continuous-Variable Quantum Key Distribution Protocol
    Goncharov, Roman
    Vorontsova, Irina
    Kirichenko, Daniil
    Filipov, Ilya
    Adam, Iurii
    Chistiakov, Vladimir
    Smirnov, Semyon
    Nasedkin, Boris
    Pervushin, Boris
    Kargina, Daria
    Samsonov, Eduard
    Egorov, Vladimir
    OPTICS, 2022, 3 (04): : 338 - 351
  • [16] Implementation of continuous-variable quantum key distribution with discrete modulation
    Hirano, Takuya
    Ichikawa, Tsubasa
    Matsubara, Takuto
    Ono, Motoharu
    Oguri, Yusuke
    Namiki, Ryo
    Kasai, Kenta
    Matsumoto, Ryutaroh
    Tsurumaru, Toyohiro
    QUANTUM SCIENCE AND TECHNOLOGY, 2017, 2 (02):
  • [17] Wavelength attack on atmospheric continuous-variable quantum key distribution
    Tan, Xin
    Guo, Ying
    Zhang, Ling
    Huang, Jingzheng
    Shi, Jinjing
    Huang, Duan
    PHYSICAL REVIEW A, 2021, 103 (01)
  • [18] Diversity space of multicarrier continuous-variable quantum key distribution
    Gyongyosi, Laszlo
    Imre, Sandor
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2019, 32 (13)
  • [19] Imperfect state preparation in continuous-variable quantum key distribution
    Liu, Wenyuan
    Wang, Xuyang
    Wang, Ning
    Du, Shanna
    Li, Yongmin
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [20] Optimal realistic attacks in continuous-variable quantum key distribution
    Hosseinidehaj, Nedasadat
    Walk, Nathan
    Ralph, Timothy C.
    PHYSICAL REVIEW A, 2019, 99 (05)