Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance

被引:73
作者
Liu, Wen-Bo
Li, Chen-Long
Xie, Yuan-Mei
Weng, Chen-Xun
Gu, Jie
Cao, Xiao-Yu
Lu, Yu-Shuo
Li, Bing-Hong
Yin, Hua-Lei [1 ]
Chen, Zeng-Bing
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Sch Phys, Nanjing 210093, Peoples R China
来源
PRX QUANTUM | 2021年 / 2卷 / 04期
基金
中国国家自然科学基金;
关键词
SECURITY;
D O I
10.1103/PRXQuantum.2.040334
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Discrete-modulated continuous-variable quantum key distribution with homodyne detection is widely recognized for its ease of implementation, efficiency with respect to error correction, and its compatibility with modern optical communication devices. However, recent studies report that the application of homodyne detection obtains poor tolerance to excess noise and insufficient transmission distance, hence seriously restricting the large-scale deployment of quantum secure communication networks. In this paper, we propose a homodyne detection protocol using the quadrature phase shift keying technique. By limiting information leakage, our proposed protocol enhances excess noise tolerance to a high level. Furthermore, we demonstrate that homodyne detection performs better than heterodyne detection in quaternary-modulated continuous-variable quantum key distribution under the untrusted detector noise scenario. The security is analyzed using the tight numerical method against collective attacks in the asymptotic regime. Our results imply that the current protocol can distribute keys in nearly intercity area and, thus, paves the way for constructing low-cost quantum secure communication networks.
引用
收藏
页数:14
相关论文
共 77 条
[1]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[2]  
Bennett C. H., 1984, P IEEE INT C COMP SY, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[3]   Secure Quantum Key Distribution over 421 km of Optical Fiber [J].
Boaron, Alberto ;
Boso, Gianluca ;
Rusca, Davide ;
Vulliez, Cedric ;
Autebert, Claire ;
Caloz, Misael ;
Perrenoud, Matthieu ;
Gras, Gaetan ;
Bussieres, Felix ;
Li, Ming-Jun ;
Nolan, Daniel ;
Martin, Anthony ;
Zbinden, Hugo .
PHYSICAL REVIEW LETTERS, 2018, 121 (19)
[4]   Security proof of continuous-variable quantum key distribution using three coherent states [J].
Bradler, Kamil ;
Weedbrook, Christian .
PHYSICAL REVIEW A, 2018, 97 (02)
[5]  
Brunner H. H., QCRYPT 2017
[6]   QUANTUM LIMITS ON BOSONIC COMMUNICATION RATES [J].
CAVES, CM ;
DRUMMOND, PD .
REVIEWS OF MODERN PHYSICS, 1994, 66 (02) :481-537
[7]   Quantum distribution of Gaussian keys using squeezed states -: art. no. 052311 [J].
Cerf, NJ ;
Lévy, M ;
Van Assche, G .
PHYSICAL REVIEW A, 2001, 63 (05) :523111-523115
[8]   Machine learning aided carrier recovery in continuous-variable quantum key distribution [J].
Chin, Hou-Man ;
Jain, Nitin ;
Zibar, Darko ;
Andersen, Ulrik L. ;
Gehring, Tobias .
NPJ QUANTUM INFORMATION, 2021, 7 (01)
[9]   Numerical approach for unstructured quantum key distribution [J].
Coles, Patrick J. ;
Metodiev, Eric M. ;
Lutkenhaus, Norbert .
NATURE COMMUNICATIONS, 2016, 7
[10]  
Comandar LC, 2016, NAT PHOTONICS, V10, P312, DOI [10.1038/NPHOTON.2016.50, 10.1038/nphoton.2016.50]