Soliton solutions for a generalized fifth-order KdV equation with t-dependent coefficients

被引:21
作者
Triki, Houria [2 ]
Biswas, Anjan [1 ]
机构
[1] Delaware State Univ, Dept Math Sci, Ctr Res & Educ Opt Sci & Applicat, Dover, DE 19901 USA
[2] Badji Mokhtar Univ, Fac Sci, Dept Phys, Radiat Phys Lab, Annaba 23000, Algeria
关键词
SUB-ODE METHOD; VARIABLE-COEFFICIENT; NONLINEAR DISPERSION; WAVE SOLUTIONS; MKDV EQUATION;
D O I
10.1080/17455030.2010.539632
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a generalized fifth-order KdV equation with time-dependent coefficients exhibiting higher-degree nonlinear terms. This nonlinear evolution equation describes the interaction between a water wave and a floating ice cover and gravity-capillary waves. By means of the subsidiary ordinary differential equation method, some new exact soliton solutions are derived. Among these solutions, we can find the well known bright and dark solitons with sech and tanh function shapes, and other soliton-like solutions. These solutions may be useful to explain the nonlinear dynamics of waves in an inhomogeneous KdV system supporting high-order dispersive and nonlinear effects.
引用
收藏
页码:151 / 160
页数:10
相关论文
共 23 条
[1]   Parametric interaction of dipolar spin wave solitons with localized electromagnetic pumping [J].
Bagada, AV ;
Melkov, GA ;
Serga, AA ;
Slavin, AN .
PHYSICAL REVIEW LETTERS, 1997, 79 (11) :2137-2140
[2]   1-soliton solution of the K(m, n) equation with generalized evolution [J].
Biswas, Anjan .
PHYSICS LETTERS A, 2008, 372 (25) :4601-4602
[3]   Theory of dissipative solitons in complex Ginzburg-Landau systems [J].
Chen, Shihua .
PHYSICAL REVIEW E, 2008, 78 (02)
[4]   Dark and antidark solitons in the modified nonlinear Schroumldinger equation accounting for the self-steepening effect [J].
Li, Min ;
Tian, Bo ;
Liu, Wen-Jun ;
Zhang, Hai-Qiang ;
Wang, Pan .
PHYSICAL REVIEW E, 2010, 81 (04)
[5]   A sub-ODE method for finding exact solutions of a generalized KdV-mKdV equation with high-order nonlinear terms [J].
Li, Xiangzheng ;
Wang, Mingliang .
PHYSICS LETTERS A, 2007, 361 (1-2) :115-118
[6]   Energy transformation in creating dark solitons and sound waves [J].
Liu, Chao-Fei ;
Hu, Ke ;
Hu, Tao ;
Tang, Yi .
PHYSICS LETTERS A, 2010, 374 (19-20) :2089-2094
[7]   Black optical solitons for media with parabolic nonlinearity law in the presence of fourth order dispersion [J].
Palacios, SL ;
Fernández-Díaz, JM .
OPTICS COMMUNICATIONS, 2000, 178 (4-6) :457-460
[8]   Two simple ansatze for obtaining exact solutions of high dispersive nonlinear Schrodinger equations [J].
Palacios, SL .
CHAOS SOLITONS & FRACTALS, 2004, 19 (01) :203-207
[9]   Dark optical solitons in power law media with time-dependent coefficients [J].
Saha, Manirupa ;
Sarma, Amarendra K. ;
Biswas, Anjan .
PHYSICS LETTERS A, 2009, 373 (48) :4438-4441
[10]   Excitation of bright and dark envelope solitons for magnetostatic waves with attractive nonlinearity [J].
Scott, MM ;
Kostylev, MP ;
Kalinikos, BA ;
Patton, CE .
PHYSICAL REVIEW B, 2005, 71 (17)