Chronic endothelin-1 treatment leads to heterologous desensitization of insulin signaling in 3T3-L1 adipocytes

被引:74
作者
Ishibashi, K
Imamura, T
Sharma, PM
Huang, J
Ugi, S
Olefsky, JM
机构
[1] Univ Calif San Diego, Dept Med 0673, Div Endocrinol & Metab, La Jolla, CA 92093 USA
[2] San Diego Vet Adm Med Res Serv, La Jolla, CA USA
[3] Whittier Diabet Inst, La Jolla, CA USA
关键词
D O I
10.1172/JCI11753
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
We recently reported that insulin and endothelin-1 (ET-1) can stimulate GLUT4 translocation via the heterotrimeric G protein G alphaq/11 and through PI3-kinase-mediated pathways in 3T3-L1 adipocytes. Because both hormones stimulate glucose transport through a common downstream pathway, we determined whether chronic ET-1 pretreatment would desensitize these cells to acute insulin signaling. We found that ET-1 pretreatment substantially inhibited insulin-stimulated 2-deoxyglucose uptake and GLUT4 translocation. Cotreatment with the ETA receptor antagonist BQ 610 prevented these effects, whereas inhibitors of G alphai or G beta gamma were without effect. Chronic ET-1 treatment inhibited insulin-stimulated tyrosine phosphorylation of G alphaq/11 and IRS-I, as well as their association with P13-kinase and blocked the activation of PI3-kinase activity and phosphorylation of Akt. In addition, chronic ET-1 treatment caused IRS-1 degradation, which could be blocked by inhibitors of PI3-kinase or p70 SG-kinase. Similarly, expression of a constitutively active Gag mutant, but not the wild-type Gag, led to IRS-1 degradation and inhibited insulin-stimulated phosphorylation of IRS-1, suggesting that the ET-1-induced decrease in IRS-1 depends on G alphaq/11 and PI3-kinase. Insulin-stimulated tyrosine phosphorylation of SHC was also reduced in ET-1 treated cells, resulting in inhibition of the MAPK pathway. In conclusion, chronic ET-1 treatment of 3T3-L1 adipocytes leads to heterologous desensitization of metabolic and mitogenic actions of insulin, most likely through the decreased tyrosine phosphorylation of the insulin receptor substrates IRS-1, SHC, and G alphaq/11.
引用
收藏
页码:1193 / 1202
页数:10
相关论文
共 44 条
[1]   Enhanced Gαq signaling:: A common pathway mediates cardiac hypertrophy and apoptotic heart failure [J].
Adams, JW ;
Sakata, Y ;
Davis, MG ;
Sah, VP ;
Wang, YB ;
Liggett, SB ;
Chien, KR ;
Brown, JH ;
Dorn, GW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (17) :10140-10145
[2]   ALTERNATIVE PATHWAY OF INSULIN SIGNALING IN MICE WITH TARGETED DISRUPTION OF THE IRS-1 GENE [J].
ARAKI, E ;
LIPES, MA ;
PATTI, ME ;
BRUNING, JC ;
HAAG, B ;
JOHNSON, RS ;
KAHN, CR .
NATURE, 1994, 372 (6502) :186-190
[3]   PHOSPHATIDYLINOSITOL 3-KINASE ACTIVATION IS REQUIRED FOR INSULIN STIMULATION OF PP70 S6 KINASE, DNA-SYNTHESIS, AND GLUCOSE-TRANSPORTER TRANSLOCATION [J].
CHEATHAM, B ;
VLAHOS, CJ ;
CHEATHAM, L ;
WANG, L ;
BLENIS, J ;
KAHN, CR .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (07) :4902-4911
[4]   ENDOTHELIN-1 INHIBITS INSULIN-STIMULATION GLUCOSE-UPTAKE IN ISOLATED RAT ADIPOCYTES [J].
CHOU, YC ;
PERNG, JC ;
JUAN, CC ;
JANG, SY ;
KWOK, CF ;
CHEN, WL ;
FONG, JC ;
HO, LT .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1994, 202 (02) :688-693
[5]   G protein beta gamma subunits [J].
Clapham, DE ;
Neer, EJ .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 1997, 37 :167-203
[6]   INHIBITION OF THE TRANSLOCATION OF GLUT1 AND GLUT4 IN 3T3-L1 CELLS BY THE PHOSPHATIDYLINOSITOL 3-KINASE INHIBITOR, WORTMANNIN [J].
CLARKE, JF ;
YOUNG, PW ;
YONEZAWA, K ;
KASUGA, M ;
HOLMAN, GD .
BIOCHEMICAL JOURNAL, 1994, 300 :631-635
[7]   Signaling mechanisms that regulate glucose transport [J].
Czech, MP ;
Corvera, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (04) :1865-1868
[8]   Signal transduction mechanisms mediating the vascular actions of endothelin [J].
Douglas, SA ;
Ohlstein, EH .
JOURNAL OF VASCULAR RESEARCH, 1997, 34 (03) :152-164
[9]   Membrane-targeted phosphatidylinositol 3-kinase mimics insulin actions and induces a state of cellular insulin resistance [J].
Egawa, K ;
Sharma, PM ;
Nakashima, N ;
Huang, Y ;
Huver, E ;
Boss, GR ;
Olefsky, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (20) :14306-14314
[10]   Persistent activation of phosphatidylinositol 3-kinase causes insulin resistance due to accelerated insulin-induced insulin receptor substrate-1 degradation in 3T3-L1 adipocytes [J].
Egawa, K ;
Nakashima, N ;
Sharma, PM ;
Maegawa, H ;
Nagai, Y ;
Kashiwagi, A ;
Kikkawa, R ;
Olefsky, JM .
ENDOCRINOLOGY, 2000, 141 (06) :1930-1935