Bounds on graph eigenvalues II

被引:134
作者
Nikiforov, Vladimir [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
clique number; spectral radius; Turan graph; maximum degree; books; SPECTRAL-RADIUS;
D O I
10.1016/j.laa.2007.07.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove three results about the spectral radius mu(G) of a graph G: (a) Let T-r (n) be the r-partite Turan graph of order n. If G is a Kr+ 1 -free graph of order n, then mu(G) < mu(T-r(n)) unless G = T-r(n). (b) For most irregular graphs G of order n and size m, mu(G) - 2m/n > 1/(2m + 2n). (c) Let 0 <= k <= l. If G is a graph of order n with no K-2 + (K) over bar (k+1) and no K-2,K-l+1, then mu(G) <= min { Delta(G), (k - l + 1 + root(k - 1 + 1)(2) + 4l (n - 1) / 2 }. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:183 / 189
页数:7
相关论文
共 14 条
[1]  
Bollobas B., 1998, Modern graph theory
[2]   Large matchings from eigenvalues [J].
Cioaba, Sebastian M. ;
Gregory, David A. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (01) :308-317
[3]  
Collatz L., 1957, Abh. Math. Semin. Univ. Hambg, V21, P63, DOI DOI 10.1007/BF02941924
[4]  
Cvetkovic D.M., 1982, Spectra of Graphs
[5]  
Erdo P., 1962, Magy. Tud. Akad. Mat. Kut. Intez. Kozl., V7, P459
[6]   Spectral radii of graphs with given chromatic number [J].
Feng, Lihua ;
Li, Qiao ;
Zhang, Xiao-Dong .
APPLIED MATHEMATICS LETTERS, 2007, 20 (02) :158-162
[7]  
FINCK HJ, 1965, WISS Z TECHN HOCHSCH, V11, P1
[8]  
Godsil C., 2001, Algebraic Graph Theory
[9]   SPECTRAL-RADIUS AND DEGREE SEQUENCE [J].
HOFMEISTER, M .
MATHEMATISCHE NACHRICHTEN, 1988, 139 :37-44
[10]   Some inequalities for the largest eigenvalue of a graph [J].
Nikiforov, V .
COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (02) :179-189