Spectral and Spatial Kernel Extreme Learning Machine for Hyperspectral Image Classification

被引:1
作者
Yang, Zhijing [1 ]
Cao, Faxian [1 ]
Zabalza, Jaime [2 ]
Chen, Weizhao [1 ]
Cao, Jiangzhong [1 ]
机构
[1] Guangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
[2] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow G1 1XW, Lanark, Scotland
来源
ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018 | 2018年 / 10989卷
关键词
Kernel extreme learning machine (KELM); Hyperspectral images (HSIs); Spectral and spatial information; FEATURE-EXTRACTION; DATA REDUCTION; REGRESSION;
D O I
10.1007/978-3-030-00563-4_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel extreme learning machine (ELM) has attracted more and more attentions due to its good performance compared with support vector machine (SVM). Since the original Kernel ELM (KELM) is just a spectral classifier, it can't extract the rich spatial information of hyperspectral images (HSIs). This hence refrains the performance of KELM. In view of this, based on the fact that the neighbors of a pixel are more likely to belong to the same class, this paper proposes a spectral and spatial KELM, which exploits the local spatial information to improve the KELM for HSIs classification. Experimental results on two well-known datasets demonstrate the good performance of the proposed spectral and spatial KELM compared with the original KELM and other state-of-the-art methods.
引用
收藏
页码:394 / 401
页数:8
相关论文
共 29 条
[1]   GENERALIZED INVERSE OF MATRICES AND ITS APPLICATIONS - RAO,CR AND MITRA,SK [J].
BANERJEE, KS .
TECHNOMETRICS, 1973, 15 (01) :197-197
[2]  
Cao F, 2018, IEEE T GEOSCI ELECT, V185, P1
[3]   Extreme Sparse Multinomial Logistic Regression: A Fast and Robust Framework for Hyperspectral Image Classification [J].
Cao, Faxian ;
Yang, Zhijing ;
Ren, Jinchang ;
Ling, Wing-Kuen ;
Zhao, Huimin ;
Marshall, Stephen .
REMOTE SENSING, 2017, 9 (12)
[4]   Linear vs. Nonlinear Extreme Learning Machine for Spectral-Spatial Classification of Hyperspectral Images [J].
Cao, Faxian ;
Yang, Zhijing ;
Ren, Jinchang ;
Jiang, Mengying ;
Ling, Wing-Kuen .
SENSORS, 2017, 17 (11)
[5]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[6]   Spectral-Spatial Classification of Hyperspectral Image Based on Kernel Extreme Learning Machine [J].
Chen, Chen ;
Li, Wei ;
Su, Hongjun ;
Liu, Kui .
REMOTE SENSING, 2014, 6 (06) :5795-5814
[7]   Hyperspectral Image Classification Using Dictionary-Based Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10) :3973-3985
[8]   Classification of Hyperspectral Images by Using Extended Morphological Attribute Profiles and Independent Component Analysis [J].
Dalla Mura, Mauro ;
Villa, Alberto ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Bruzzone, Lorenzo .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (03) :542-546
[9]   Morphological Attribute Profiles for the Analysis of Very High Resolution Images [J].
Dalla Mura, Mauro ;
Benediktsson, Jon Atli ;
Waske, Bjoern ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (10) :3747-3762
[10]   Classification of Hyperspectral Images by Exploiting Spectral-Spatial Information of Superpixel via Multiple Kernels [J].
Fang, Leyuan ;
Li, Shutao ;
Duan, Wuhui ;
Ren, Jinchang ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (12) :6663-6674