Simulation and Analysis of Surface Plasmon Resonance Based Sensor

被引:1
作者
Lourenco, Paulo [1 ,2 ]
Vieira, Manuela [1 ,3 ]
Fantoni, Alessandro [1 ,3 ]
机构
[1] Inst Politecn Lisboa, ISEL, Rua Conselheiro Emidio Navarro 1, P-1959007 Lisbon, Portugal
[2] Univ Nova Lisboa, FCT, Dept Engn Eletrotecn, Campus Caparica, P-2829516 Caparica, Portugal
[3] Univ Nova Lisboa, FCT, Dept Engn Eletrotecn, CTS,UNINOVA, Campus Caparica, P-2829516 Caparica, Portugal
来源
TECHNOLOGICAL INNOVATION FOR RESILIENT SYSTEMS (DOCEIS 2018) | 2018年 / 521卷
关键词
Photonics; FDTD simulations; Surface plasmon resonance; Fano interference;
D O I
10.1007/978-3-319-78574-5_24
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we will be presenting the results obtained through Finite-Difference Time Domain simulations on a photonic sensing architecture. This device consists on a dielectric/metal/dielectric sensing structure. Under adequate conditions, when electromagnetic energy strikes the different dielectrics interface, these devices develop surface plasmon resonances which are extremely sensitive to refractive index variations, thus being able to be used as sensing structures. Considering their minute dimensions, monolithic integration is attainable and by incorporating cost-effective materials in their manufacture, devices' mass production may be efficient and information and communication technological systems' resiliency will be greatly facilitated. Next, this architecture is analysed under amplitude and refractive index sensitivity perspectives, its performance is analysed and considerations about its use as a sensing device are contemplated. Finally, conclusions of our work are presented and future development directions are described.
引用
收藏
页码:252 / 261
页数:10
相关论文
共 9 条
[1]   Cyber Resiliency Engineering Overview of the Architectural Assessment Process [J].
Bodeau, Deborach J. ;
Graubat, Richard D. ;
Laderman, Ellen R. .
2014 CONFERENCE ON SYSTEMS ENGINEERING RESEARCH, 2014, 28 :838-847
[2]   Passivated Aluminum Nanohole Arrays for Label-Free Biosensing Applications [J].
Canalejas-Tejero, Victor ;
Herranz, Sonia ;
Bellingham, Alyssa ;
Moreno-Bondi, Maria Cruz ;
Barrios, Carlos Angulo .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (02) :1005-1010
[3]   Low Cost Sensors Based on SPR in a Plastic Optical Fiber for Biosensor Implementation [J].
Cennamo, Nunzio ;
Massarotti, Davide ;
Conte, Laura ;
Zeni, Luigi .
SENSORS, 2011, 11 (12) :11752-11760
[4]  
Fantoni A, 2017, INT C NUMER SIMUL, P167, DOI 10.1109/NUSOD.2017.8010044
[5]   Resilient long-distance sensor system using a multiwavelength Raman laser [J].
Fernandez-Vallejo, M. ;
Diaz, S. ;
Perez-Herrera, R. A. ;
Passaro, D. ;
Selleri, S. ;
Quintela, M. A. ;
Lopez Higuera, J. M. ;
Lopez-Amo, M. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2010, 21 (09)
[6]  
Haeberle S., 2012, Microsystems and Nanotechnology, P853, DOI 10.1007/978-3-642-18293-8_22
[7]  
Koley B, 2008, US, Patent No. [2008/0050117 A1, 20080050117]
[8]  
Maier S. A., 2007, PLASMONICS FUNDAMENT, P65, DOI DOI 10.1007/0-387-37825-1
[9]   Enhanced Phase Sensitivity in Plasmonic Refractive Index Sensor Based on Slow Light [J].
Zafar, Rukhsar ;
Salim, Mohammad .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (20) :2187-2190