On fine gradings and their symmetries

被引:16
作者
Patera, J
Havlícek, M
Pelantová, E
Tolar, J
机构
[1] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
[2] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Doppler Inst Math Phys, CZ-11519 Prague, Czech Republic
关键词
D O I
10.1023/A:1017501925328
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper fine gradings of gl(n, C) associated with the Pauli matrices in n dimensions are studied with the subsequent graded contractions of sl(n, C) in view. It is shown that, if n greater than or equal to 3 is a prime, the discrete symmetries of the gradings involve the special n-dimensional representations of SL(2, F-n), where F-n is the finite field of order n. These symmetries may be used to simplify the system of contraction equations.
引用
收藏
页码:383 / 391
页数:9
相关论文
共 23 条
[1]  
BALIAN R, 1986, CR ACAD SCI I-MATH, V303, P773
[2]   GRADED CONTRACTIONS OF SL(3,C) [J].
COUTURE, M ;
PATERA, J ;
SHARP, RT ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (09) :2310-2318
[3]   DISCRETE AND CONTINUOUS GRADED CONTRACTIONS OF LIE-ALGEBRAS AND SUPERALGEBRAS [J].
DEMONTIGNY, M ;
PATERA, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (03) :525-547
[4]   GRADED CONTRACTIONS AND KINEMATICAL GROUPS OF SPACE-TIME [J].
DEMONTIGNY, M ;
PATERA, J ;
TOLAR, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (01) :405-425
[5]   On Lie gradings II [J].
Havlicek, M ;
Patera, J ;
Pelantova, E .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 277 (1-3) :97-125
[6]   On Lie gradings III.: Gradings of the real forms of classical Lie algebras [J].
Havlícek, M ;
Patera, J ;
Pelantová, E .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 314 (1-3) :1-47
[7]   On the fine gradings of simple classical lie algebras [J].
Havlicek, M ;
Patera, J ;
Pelantova, E .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (01) :189-194
[8]  
HAVLICEK M, 1997, 21 INT C GROUP THEOR, P116
[9]  
HAVLICEK M, 1998, RUSSIAN J NUCL PHYS, V61
[10]  
HAVLICEK M, 1998, LIE THEORY ITS APPL, V2, P119