Privacy-Preserving Compressive Sensing for Crowdsensing based Trajectory Recovery

被引:57
|
作者
Kong, Linghe [1 ,3 ]
He, Liang [2 ]
Liu, Xiao-Yang [3 ]
Gu, Yu [4 ]
Wu, Min-You [3 ]
Liu, Xue [1 ]
机构
[1] McGill Univ, Montreal, PQ H3A 2T5, Canada
[2] Univ Michigan, Ann Arbor, MI 48109 USA
[3] Shanghai Jiao Tong Univ, Shanghai 200030, Peoples R China
[4] IBM Res Austin, Austin, TX USA
关键词
D O I
10.1109/ICDCS.2015.12
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Location based services have experienced an explosive growth and evolved from utilizing a single location to the whole trajectory. Due to the hardware and energy constraints, there are usually many missing data within a trajectory. In order to accurately recover the complete trajectory, crowdsensing provides a promising method. This method resorts to the correlation among multiple users' trajectories and the advanced compressive sensing technique, which significantly outperforms conventional interpolation methods on accuracy. However, as trajectories exposes users' daily activities, the privacy issue is a major concern in crowdsensing. While existing solutions independently tackle the accurate trajectory recovery and privacy issues, yet no single design is able to address these two challenges simultaneously. Therefore in this paper, we propose a novel Privacy Preserving Compressive Sensing (PPCS) scheme, which encrypts a trajectory with several other trajectories while maintaining the homomorphic obfuscation property for compressive sensing. Under PPCS, adversaries can only capture the encrypted data, so the user privacy is preserved. Furthermore, the homomorphic obfuscation property guarantees that the recovery accuracy of PPCS is comparable to the state-of-the-art compressive sensing design. Based on two publicly available traces with numerous users and long durations, we conduct extensive simulations to evaluate PPCS. The results demonstrate that PPCS achieves a high accuracy of <53 m and a large distortion between the encrypted and the original trajectories (a commonly adopted metric of privacy strength) of >9,000 m even when up to 50% original data are missing.
引用
收藏
页码:31 / 40
页数:10
相关论文
共 50 条
  • [31] Practical privacy-preserving compressed sensing image recovery in the cloud
    Kai HUANG
    Ming XU
    Shaojing FU
    Dongsheng WANG
    Science China(Information Sciences), 2017, 60 (09) : 277 - 285
  • [32] Practical privacy-preserving compressed sensing image recovery in the cloud
    Huang, Kai
    Xu, Ming
    Fu, Shaojing
    Wang, Dongsheng
    SCIENCE CHINA-INFORMATION SCIENCES, 2017, 60 (09)
  • [33] FedMCS: A Privacy-Preserving Mobile Crowdsensing Defense Scheme
    Xu, Mengfan
    Li, Xinghua
    CYBERSPACE SAFETY AND SECURITY, CSS 2022, 2022, 13547 : 244 - 258
  • [34] Decentralized Privacy-Preserving Reputation Management for Mobile Crowdsensing
    Ma, Lichuan
    Pei, Qingqi
    Qu, Youyang
    Fan, Kefeng
    Lai, Xin
    SECURITY AND PRIVACY IN COMMUNICATION NETWORKS, SECURECOMM, PT I, 2019, 304 : 532 - 548
  • [35] Frameworks for Privacy-Preserving Mobile Crowdsensing Incentive Mechanisms
    Lin, Jian
    Yang, Dejun
    Li, Ming
    Xu, Jia
    Xue, Guoliang
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2018, 17 (08) : 1851 - 1864
  • [36] EPDL: An efficient and privacy-preserving deep learning for crowdsensing
    Xu, Chang
    Jin, Guoxie
    Zhu, Liehuang
    Zhang, Chuan
    Jia, Yu
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2022, 15 (06) : 2529 - 2541
  • [37] Age of Information Optimization for Privacy-Preserving Mobile Crowdsensing
    Yang, Yaoqi
    Zhang, Bangning
    Guo, Daoxing
    Xu, Renhui
    Su, Chunhua
    Wang, Weizheng
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2024, 12 (01) : 281 - 292
  • [38] BPPF: Bilateral Privacy-Preserving Framework for Mobile Crowdsensing
    LIU Junyu
    YANG Yongjian
    WANG En
    ZTE Communications, 2021, 19 (02) : 20 - 28
  • [39] Lightweight and Privacy-Preserving Dual Incentives for Mobile Crowdsensing
    Wan, Lin
    Liu, Zhiquan
    Ma, Yong
    Cheng, Yudan
    Wu, Yongdong
    Li, Runchuan
    Ma, Jianfeng
    IEEE TRANSACTIONS ON CLOUD COMPUTING, 2024, 12 (02) : 504 - 521
  • [40] Intelligent Pandemic Surveillance via Privacy-Preserving Crowdsensing
    Asif, Hafiz
    Papakonstantinou, Periklis A.
    Shiau, Stephanie
    Singh, Vivek
    Vaidya, Jaideep
    IEEE INTELLIGENT SYSTEMS, 2022, 37 (04) : 88 - 96