Fast and accurate quantification of insertion-site specific transgene levels from raw seed samples using solid-state nanopore technology

被引:4
作者
Pearson, Michael D. [1 ]
Nguyen, Leslee [1 ]
Zhao, Yanan [1 ]
McKenna, William L. [1 ]
Morin, Trevor J. [1 ]
Dunbar, William B. [1 ]
机构
[1] Ontera Inc, Santa Cruz, CA 95060 USA
关键词
DNA;
D O I
10.1371/journal.pone.0226719
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many modern crop varieties contain patented biotechnology traits, and an increasing number of these crops have multiple (stacked) traits. Fast and accurate determination of trans gene levels is advantageous for a variety of use cases across the food, feed and fuel value chain. With the growing number of new transgenic crops, any technology used to quantify them should have robust assays that are simple to design and optimize, thereby facilitating the addition of new traits to an assay. Here we describe a PCR-based method that is simple to design, starts from whole seeds, and can be run to end-point in less than 5 minutes. Subsequent relative quantification (trait vs. non-trait) using capillary electrophoresis performed in 5% increments across the 0-100% range showed a mean absolute error of 1.9% (s.d. = 1.1%). We also show that the PCR assay can be coupled to non-optical solid-state nano pore sensors to give seed-to-trait quantification results with a mean absolute error of 2.3% (s.d. = 1.6%). In concert, the fast PCR and nanopore sensing stages demonstrated here can be fully integrated to produce seed-to-trait quantification results in less than 10 minutes, with high accuracy across the full dynamic range.
引用
收藏
页数:17
相关论文
共 18 条
[1]  
[Anonymous], 2013, TRANSGENIC RES, V22, P461, DOI [10.1007/s11248-012-9684-1, DOI 10.1007/S11248-012-9684-1]
[2]   Tracking genes from seed to supermarket: techniques and trends [J].
Auer, CA .
TRENDS IN PLANT SCIENCE, 2003, 8 (12) :591-597
[3]   DNA conformation and base number simultaneously determined in a nanopore [J].
Fologea, Daniel ;
Brandin, Eric ;
Uplinger, James ;
Branton, Daniel ;
Li, Jiali .
ELECTROPHORESIS, 2007, 28 (18) :3186-3192
[4]   A statistical approach to quantification of genetically modified organisms (GMO) using frequency distributions [J].
Gerdes, Lars ;
Busch, Ulrich ;
Pecoraro, Sven .
BMC BIOINFORMATICS, 2014, 15
[5]   Testing for genetically modified organisms (GMOs): Past, present and future perspectives [J].
Holst-Jensen, Arne .
BIOTECHNOLOGY ADVANCES, 2009, 27 (06) :1071-1082
[6]   Event-specific real-time detection and quantification of genetically modified Roundup Ready soybean [J].
Huang, CC ;
Pan, TM .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2005, 53 (10) :3833-3839
[7]   GMO detection using a bioluminescent real time reporter (BART) of loop mediated isothermal amplification (LAMP) suitable for field use [J].
Kiddle, Guy ;
Hardinge, Patrick ;
Buttigieg, Neil ;
Gandelman, Olga ;
Pereira, Clint ;
McElgunn, Cathal J. ;
Rizzoli, Manuela ;
Jackson, Rebecca ;
Appleton, Nigel ;
Moore, Cathy ;
Tisi, Laurence C. ;
Murray, James A. H. .
BMC BIOTECHNOLOGY, 2012, 12
[8]   Ion-beam sculpting at nanometre length scales [J].
Li, J ;
Stein, D ;
McMullan, C ;
Branton, D ;
Aziz, MJ ;
Golovchenko, JA .
NATURE, 2001, 412 (6843) :166-169
[9]   A handheld platform for target protein detection and quantification using disposable nanopore strips [J].
Morin, Trevor J. ;
McKenna, William L. ;
Shropshire, Tyler D. ;
Wride, Dustin A. ;
Deschamps, Joshua D. ;
Liu, Xu ;
Stamm, Reto ;
Wang, Hongyun ;
Dunbar, William B. .
SCIENTIFIC REPORTS, 2018, 8
[10]   Nanopore-Based Target Sequence Detection [J].
Morin, Trevor J. ;
Shropshire, Tyler ;
Liu, Xu ;
Briggs, Kyle ;
Huynh, Cindy ;
Tabard-Cossa, Vincent ;
Wang, Hongyun ;
Dunbar, William B. .
PLOS ONE, 2016, 11 (05)