THE FINITE DIFFERENCE METHOD FOR DISSIPATIVE KLEIN-GORDON-SCHRODINGER EQUATIONS IN THREE SPACE DIMENSIONS

被引:10
作者
Zhang, Fayong [1 ,2 ]
Han, Bo [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Heilongjiang Univ, Sch Math Sci, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
Dissipative Klein-Gordon-Schrodinger equations; Finite difference method; Error bounds; Maximal attractor; ATTRACTORS;
D O I
10.4208/jcm.1004-m3191
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A fully discrete finite difference scheme for dissipative Klein-Gordon-Schrodinger equations in three space dimensions is analyzed. On the basis of a series of the time-uniform priori estimates of the difference solutions and discrete version of Sobolev embedding theorems, the stability of the difference scheme and the error bounds of optimal order for the difference solutions are obtained in H-2 x H-2 x H-1 over a finite time interval. Moreover, the existence of a maximal attractor is proved for a discrete dynamical system associated with the fully discrete finite difference scheme.
引用
收藏
页码:879 / 900
页数:22
相关论文
共 15 条
[1]  
Baillon J.-B., 1978, North-Holland Math. Stud., V30, P37
[3]   THE GLOBAL DYNAMICS OF DISCRETE SEMILINEAR PARABOLIC EQUATIONS [J].
ELLIOTT, CM ;
STUART, AM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (06) :1622-1663
[4]   ERROR-ESTIMATES WITH SMOOTH AND NONSMOOTH DATA FOR A FINITE-ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION [J].
ELLIOTT, CM ;
LARSSON, S .
MATHEMATICS OF COMPUTATION, 1992, 58 (198) :603-630
[5]   COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS .2. [J].
FUKUDA, I ;
TSUTSUMI, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 66 (02) :358-378
[6]  
Fukuda I., 1979, Math. Japon., V24, P307
[7]  
Guo BL, 1997, J DIFFER EQUATIONS, V136, P356, DOI 10.1006/jdeq.1996.3242
[8]  
HALE JK, 1988, MATH COMPUT, V50, P89, DOI 10.1090/S0025-5718-1988-0917820-X
[9]  
HALE JK, 1988, AMS MATH SURVEYS MON, V25
[10]   ON THE GLOBAL STRONG SOLUTIONS OF COUPLED KLEIN-GORDON-SCHRODINGER EQUATIONS [J].
HAYASHI, N ;
VONWAHL, W .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1987, 39 (03) :489-497