Twisted conjugacy classes in nilpotent groups

被引:37
作者
Roman'kov, V. [1 ]
机构
[1] Omsk State Dostoevskii Univ, Omsk 644077, Russia
关键词
D O I
10.1016/j.jpaa.2010.06.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let N be a finitely generated nilpotent group We show that there is an algorithm that for any automorphism phi is an element of Aut(N) computes its Reidemeister number R(phi) It is proved that any free nilpotent group N(rc) of rank r and class c belongs to class R(infinity) if any of the following conditions holds r = 2 and c >= 4 r = 3 and c >= 12 r >= 4 and c >= 2r (C) 2010 Elsevier B V All rights reserved
引用
收藏
页码:664 / 671
页数:8
相关论文
共 29 条
  • [1] Baumslag G., Myasnikov A.G., Shpilrain V.
  • [2] Handbook of Topological Fixed Point Theory, (2005)
  • [3] Fel'shtyn A.L., The Reidemeister number of any automorphism of a Gromov hyperbolic group is infinite, Zap. Nauchn. Sem. POMI, 279, pp. 229-241, (2001)
  • [4] Fel'shtyn A.L., The Reidemeister zeta function and the computation of the Nielsen zeta function, Colloq. Math., 62, pp. 153-166, (1991)
  • [5] Fel'shtyn A.L., Gonchalves D., (2007)
  • [6] Fel'shtyn A.L., Gonchalves D., Reidemeister number of any automorphism of Baumslag-Solitar group is infinite, Progress in Math., 265, pp. 286-306, (2008)
  • [7] Fel'shtyn A., Gonchalves D., Wong P., (2008)
  • [8] Fel'shtyn A., Hill R., The Reidemeister zeta function with applications to Nielsen theory and a connection with Reidemeister torsion, J. K-Theory, 8, 1994, pp. 367-393, (2007)
  • [9] Fel'shtyn A., Leonov Y., Troitsky E., Twisted conjugacy classes in saturated weakly branch groups, Geom. Dedicata, 134, pp. 61-73, (2008)
  • [10] Fel'shtyn A., Troitsky E., Twisted Burnside-Frobenius theory for discrete groups, J. Reine Angew. Math., 613, pp. 193-210, (2007)