Eliminating forging defects using genetic algorithms

被引:18
|
作者
António, CC [1 ]
Castro, CF [1 ]
Sousa, LC [1 ]
机构
[1] Univ Porto, Fac Engn, IDMEC, DEMEGI, P-4200465 Oporto, Portugal
关键词
finite element method; genetic algorithms; hot forging; metal-forming processes; optimization; preform design;
D O I
10.1081/AMP-200053557
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, an optimization method for metal forging process designs using finite element-based simulation is presented. Using as entry parameters the specifications of the final product the so-called inverse techniques developed for optimization problems allows the calculation of the optimal solution, the design parameters that produce the required product. An evolutionary genetic algorithm is proposed to calculate optimal shape geometry and temperature. An example demonstrating the efficiency of the developed method is presented considering a two-stage hot forging process. It considers optimization of the process parameters to reduce the difference between the realized and the prescribed final forged shape under minimal energy consumption, restricting the maximum temperature.
引用
收藏
页码:509 / 522
页数:14
相关论文
共 50 条
  • [1] Preform optimization for hot forging processes using genetic algorithms
    Johannes Knust
    Florian Podszus
    Malte Stonis
    Bernd-Arno Behrens
    Ludger Overmeyer
    Georg Ullmann
    The International Journal of Advanced Manufacturing Technology, 2017, 89 : 1623 - 1634
  • [2] Preform optimization for hot forging processes using genetic algorithms
    Knust, Johannes
    Podszus, Florian
    Stonis, Malte
    Behrens, Bernd-Arno
    Overmeyer, Ludger
    Ullmann, Georg
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 89 (5-8): : 1623 - 1634
  • [3] Preform optimal design in metal forging using genetic algorithms
    Poursina, M
    António, CAC
    Castro, CF
    Parvizian, J
    Sousa, LC
    ENGINEERING COMPUTATIONS, 2004, 21 (5-6) : 631 - 650
  • [4] Optimisation of shape and process parameters in metal forging using genetic algorithms
    Castro, CF
    António, CAC
    Sousa, LC
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2004, 146 (03) : 356 - 364
  • [5] Automatic inspection of metallic surface defects using genetic algorithms
    Zheng, H
    Kong, LX
    Nahavandi, S
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2002, 125 : 427 - 433
  • [6] TOMOGRAPHIC RECONSTRUCTION OF DEFECTS IN COMPOSITE PLATES USING GENETIC ALGORITHMS WITH CLUSTER ANALYSIS
    Kishore, N. N.
    Munshi, P.
    Ranamale, M. A.
    Ramakrishna, V. V.
    Arnold, W.
    RESEARCH IN NONDESTRUCTIVE EVALUATION, 2011, 22 (01) : 31 - 60
  • [7] ELIMINATING SUBSTRATE DEFECTS
    JONES, AR
    PLATING AND SURFACE FINISHING, 1994, 81 (10): : 14 - 17
  • [8] Eliminating recessive defects
    Darwin, L
    JOURNAL OF HEREDITY, 1927, 18 (12) : 529 - 529
  • [9] Using genetic algorithms
    Bucci, Mark
    C/C++ Users Journal, 2002, 20 (06): : 22 - 29
  • [10] Integral Formulation and Genetic Algorithms for Defects Geometry Reconstruction Using Pulse Eddy Currents
    Preda, Gabriel
    Rebican, Mihai
    Hantila, Florea Ioan
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3433 - 3436