Finite-size effects in exponential random graphs

被引:2
作者
Gorsky, A. [1 ,2 ]
Valba, O. [3 ]
机构
[1] RAS, Inst Informat Transmiss Problems, Moscow, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
[3] Natl Res Univ Higher Sch Econ, Dept Appl Math, Moscow 101000, Russia
关键词
random graphs; finite size effect; two-star model; phase transition; PHASE-TRANSITIONS; MODELS;
D O I
10.1093/comnet/cnaa008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we shownumerically the strong finite-size effects in exponential random graphs. Particularly, for the two-star model above the critical value of the chemical potential for triplets a ground state is a starlike graph with the finite set of hubs at network density p < 0.5 or as the single cluster at p > 0.5. We find that there exists the critical value of number of nodes N* (p) when the ground state undergoes clear-cut crossover. At N > N* (p), the network flows via a cluster evaporation to the state involving the small star in the Erdos-Renyi environment. The similar evaporation of the cluster takes place at N > N * (p) in the Strauss model. We suggest that the entropic trap mechanism is relevant for microscopic mechanism behind the crossover regime.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A model to study finite-size and magnetic effects on the phase transition of a fermion interacting system
    Correa, Emerson B. S.
    Linhares, Cesar A.
    Malbouisson, Adolfo P. C.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (08):
  • [42] Phase transitions at electrode-electrolyte interfaces interpreted as a result of finite-size effects
    Medved', I.
    Huckaby, D. A.
    FLUID PHASE EQUILIBRIA, 2010, 290 (1-2) : 21 - 24
  • [43] Broadening of the Berezinskii-Kosterlitz-Thouless superconducting transition by inhomogeneity and finite-size effects
    Benfatto, L.
    Castellani, C.
    Giamarchi, T.
    PHYSICAL REVIEW B, 2009, 80 (21)
  • [44] Finite-size effects in one-dimensional Bose-Einstein condensation of photons
    Liu, Zhi-Jie
    Xie, Mi
    OPEN PHYSICS, 2022, 20 (01): : 259 - 264
  • [45] A Detailed Investigation into Near Degenerate Exponential Random Graphs
    Mei Yin
    Journal of Statistical Physics, 2016, 164 : 241 - 253
  • [46] A Detailed Investigation into Near Degenerate Exponential Random Graphs
    Yin, Mei
    JOURNAL OF STATISTICAL PHYSICS, 2016, 164 (01) : 241 - 253
  • [47] The Metastable State and the Finite-Size Effect of the First-Order Phase Transition
    Xu, Mingmei
    Wu, Yuanfang
    SYMMETRY-BASEL, 2023, 15 (02):
  • [48] Finite-Size Left-Passage Probability in Percolation
    Ikhlef, Yacine
    Ponsaing, Anita K.
    JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (01) : 10 - 36
  • [49] Anomalous finite-size scaling in higher-order processes with absorbing states
    Vezzani, Alessandro
    Munoz, Miguel A.
    Burioni, Raffaella
    PHYSICAL REVIEW E, 2023, 107 (01)
  • [50] Finite-size effect on quantum percolation in topological insulators
    Chen, Rui
    Hua, Chun-Bo
    Sun, Hai-Peng
    Zhou, Bin
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (12)