Finite-size effects in exponential random graphs

被引:2
作者
Gorsky, A. [1 ,2 ]
Valba, O. [3 ]
机构
[1] RAS, Inst Informat Transmiss Problems, Moscow, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
[3] Natl Res Univ Higher Sch Econ, Dept Appl Math, Moscow 101000, Russia
关键词
random graphs; finite size effect; two-star model; phase transition; PHASE-TRANSITIONS; MODELS;
D O I
10.1093/comnet/cnaa008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we shownumerically the strong finite-size effects in exponential random graphs. Particularly, for the two-star model above the critical value of the chemical potential for triplets a ground state is a starlike graph with the finite set of hubs at network density p < 0.5 or as the single cluster at p > 0.5. We find that there exists the critical value of number of nodes N* (p) when the ground state undergoes clear-cut crossover. At N > N* (p), the network flows via a cluster evaporation to the state involving the small star in the Erdos-Renyi environment. The similar evaporation of the cluster takes place at N > N * (p) in the Strauss model. We suggest that the entropic trap mechanism is relevant for microscopic mechanism behind the crossover regime.
引用
收藏
页数:10
相关论文
共 32 条
[1]   A random graph model for power law graphs [J].
Aiello, W ;
Chung, F ;
Lu, LY .
EXPERIMENTAL MATHEMATICS, 2001, 10 (01) :53-66
[2]   The two-star model: exact solution in the sparse regime and condensation transition [J].
Annibale, A. ;
Courtney, O. T. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (36)
[3]   Phase transitions in social networks inspired by the Schelling model [J].
Avetisov, V ;
Gorsky, A. ;
Maslov, S. ;
Nechaev, S. ;
Valba, O. .
PHYSICAL REVIEW E, 2018, 98 (03)
[4]   Eigenvalue tunneling and decay of quenched random network [J].
Avetisov, V. ;
Hovhannisyan, M. ;
Gorsky, A. ;
Nechaev, S. ;
Tamm, M. ;
Valba, O. .
PHYSICAL REVIEW E, 2016, 94 (06)
[5]  
Avetisov V., 2019, COMPL NETW, P1, DOI [10.1093/comnet/cnz026, DOI 10.1093/COMNET/CNZ026]
[6]   Precision lattice test of the gauge/gravity duality at large N [J].
Berkowitz, Evan ;
Rinaldi, Enrico ;
Hanada, Masanori ;
Ishiki, Goro ;
Shimasaki, Shinji ;
Vranas, Pavlos .
PHYSICAL REVIEW D, 2016, 94 (09)
[7]  
Biroli G., 2018, ARXIV181007545
[8]   Cut-offs and finite size effects in scale-free networks [J].
Boguña, M ;
Pastor-Satorras, R ;
Vespignani, A .
EUROPEAN PHYSICAL JOURNAL B, 2004, 38 (02) :205-209
[9]   Perturbing general uncorrelated networks [J].
Burda, Z. ;
Jurkiewicz, J. ;
Krzywicki, A. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (2 2) :026106-1
[10]   ESTIMATING AND UNDERSTANDING EXPONENTIAL RANDOM GRAPH MODELS [J].
Chatterjee, Sourav ;
Diaconis, Persi .
ANNALS OF STATISTICS, 2013, 41 (05) :2428-2461